Atter en ulikhet 2
Posted: 19/04-2013 03:48
For reelle tall $c_i$ og positive heltall $n$, vis at
$\sqrt{c_1^2+(1-c_2)^2}+\sqrt{c_2^2+(1-c_3)^2}+\sqrt{c_3^2+(1-c_4)^2}+\cdots +\sqrt{c_{n-1}^2+(1-c_n)^2}+ \sqrt{c_n^2+(1-c_1)^2}\geq \frac{n\sqrt{2}}{2}$
$\sqrt{c_1^2+(1-c_2)^2}+\sqrt{c_2^2+(1-c_3)^2}+\sqrt{c_3^2+(1-c_4)^2}+\cdots +\sqrt{c_{n-1}^2+(1-c_n)^2}+ \sqrt{c_n^2+(1-c_1)^2}\geq \frac{n\sqrt{2}}{2}$