Page 1 of 1

Algebra (Fysikkoppg.)

Posted: 20/02-2013 20:49
by Jau
Sliter litt med en fysikkoppgave

Oppgaven er å finne [tex]d[/tex]
vi har fått opgitt formlene:
[tex]u=\frac{F\cdot l^3}{3 \cdot E \cdot I}[/tex] og [tex]I=\frac{\pi (D^4-d^4)}{64}[/tex]

[tex]u=\frac{F \cdot l^3}{3 \cdot E \cdot \frac{\pi (D^4-d^4)}{64}}[/tex]

[tex]u \cdot (3 \cdot E \cdot \frac{\pi (D^4-d^4)}{64})=F \cdot l^3[/tex]

[tex]3u \cdot Eu \cdot \frac{\pi (D^4-d^4)u}{64}=F \cdot l^3[/tex]

[tex]3u \cdot Eu \cdot \pi \cdot (D^4-d^4) \cdot u=F \cdot l^3 \cdot 64[/tex]

[tex]D^4-d^4=\frac{F \cdot l^3 \cdot 64}{3u \cdot Eu \cdot \pi \cdot u}[/tex]

[tex]d=\sqrt[4]{D^4-\frac{F \cdot l^3 \cdot 64}{3u \cdot Eu \cdot \pi \cdot u}}[/tex]

Dette svaret er feil, svaret jeg får utfra denne formelen passer ikke inn i formelen jeg startet med. Hvor er feilen(e) i utrekningen?

Posted: 20/02-2013 20:53
by 2357
Plutselig ganger du inn mange u-er på venstreside.

Posted: 20/02-2013 21:40
by Jau
Ja nå stemmer det! Takk for svar

Har et spørsmål til:

Har likningen:

[tex]\frac{T-2943000}{T}=sin2[/tex]

er det mulig å skrive denne likningen på formen T=....?
Og hvordan går jeg fram for å komme dit?

Posted: 20/02-2013 22:06
by Aleks855
Jau wrote:Ja nå stemmer det! Takk for svar

Har et spørsmål til:

Har likningen:

[tex]\frac{T-2943000}{T}=sin2[/tex]

er det mulig å skrive denne likningen på formen T=....?
Og hvordan går jeg fram for å komme dit?
Brøken kan brytes opp i to brøker.

[tex]\frac T T - \frac{2943000}{T} = \sin 2[/tex]

[tex]1-\frac{2943000}{T} = \sin 2[/tex]

Tar du den herfra?

Posted: 20/02-2013 22:20
by Jau
Jepp!
Takk for hjelpen :)