Page 1 of 1

Derivasjon og omskrivning av trig.funksjon.

Posted: 10/01-2013 17:47
by Razzy
Hei


Sliter litt med å se siste ledd i følgende utregning:

Image

Hva skjer inne i parantesen?

Er det en formel jeg har oversett her?

Posted: 10/01-2013 17:57
by Janhaa
[tex]\sin^2(\theta)+\cos^2(\theta)=1[/tex]

Posted: 10/01-2013 18:07
by Aleks855
Det som skjer inni parentesen er:

[tex]2\sin^2x-\cos^2x = 2(1-\cos^2x)-\cos^2x = 2-2\cos^2x-\cos^2x = 2-3\cos^2x[/tex]

Bruker formelen som Janhaa nevner til å skrive om [tex]\sin^2x[/tex] til [tex]1-\cos^2x[/tex]

Posted: 10/01-2013 18:09
by Razzy
Janhaa wrote:[tex]\sin^2(\theta)+\cos^2(\theta)=1[/tex]
Hei Janhaa - det så jo veldig enkelt ut...

Klarer ikke helt å se det, kunne du ført det? :?

Posted: 10/01-2013 19:13
by Aleks855
Razzy wrote:
Janhaa wrote:[tex]\sin^2(\theta)+\cos^2(\theta)=1[/tex]
Hei Janhaa - det så jo veldig enkelt ut...

Klarer ikke helt å se det, kunne du ført det? :?
Tenk på at likninga [tex]x^2+y^2=1[/tex] er en sirkel med radius 1.

Husk nå at enhetssirkelen er nettopp denne sirkelen, men istedet for x og y, så har vi cosinus og sinus.

Vips så har vi bevist dette, i noe løs form, siden den nevnte likninga er mengden av alle punkter med avstand 1 fra punktet (0, 0).

Denne trig-identiteten er noe man generelt husker. Det er den aller mest grunnleggende trig-identiteten av alle, og brukes i fleng når man driver og deriverer eller integrerer trig-funksjoner.

Posted: 10/01-2013 20:22
by Razzy
Takk Aleks855! ;)

Bare lenge siden jeg har hatt det - kommer forhåpentligvis kjapt tilbake :P