Page 1 of 1

Hva vil det si at en rekke konvergerer "conditionally&a

Posted: 01/12-2011 22:07
by laks34
Hvis jeg tar absoluttverdien av en alternerende rekke og finner ut at denne konvergerer så vil det medføre at den opprinnelige rekka konvergerer absolutt.

Likevel ser jeg i fasiten at det ofte står "converges conditionally" når jeg har funnet ut at den konvergerer absolutt :x

..f. eks. den alternerende rekken ((-1)^(n+1))* ((1+n)/n^2)...

Absoluttverdi av rekka gir: ((1+n)/n^2)
Ved nth-term Test ser man at rekken går mot 0 som betyr konvergens..

Hvorfor står det likevel i fasiten at rekken "converges conditionally"??
:?

Posted: 01/12-2011 22:18
by Vektormannen
Mener du at [tex]\sum_{n = 1}^\infty \frac{1+n}{n^2}[/tex] konvergerer?

Posted: 01/12-2011 22:20
by laks34
ja.. når jeg bruker nth-term så blir det 0..

Betyr ikke det at rekken konvergerer?:/

Posted: 01/12-2011 22:23
by Vektormannen
Nei. At leddene i rekken må gå mot 0 er nødvendig for at rekken skal konvergere, men ikke tilstrekkelig. Hvis leddene ikke går mot 0 så divergerer rekken -- ingen tvil om det. Men hvis leddene går mot 0 kan rekken konvergere. Den må ikke gjøre det, og i dette tilfellet gjør den ikke det!

Som sagt i en annen tråd så er det veldig lurt om du husker på p-rekkene som har form [tex]\sum_{n = 1}^\infty \frac{1}{n^p}[/tex]. Disse konvergerer for p > 1 og divergerer for [tex]p \leq 1[/tex] -- selv om nte-leddstesten gir at alle disse rekkene har ledd som går mot 0.

Posted: 01/12-2011 22:28
by laks34
okay.. men i dette tilfellet er vel p = 2 > 1 og det skal jo tilsi konvergens skal det ikke ? :/

Posted: 01/12-2011 22:31
by Vektormannen
p er ikke 2 nei, for her har du ikke med en p-rekke å gjøre! For at du skal kunne benytte det så må rekken være på nøyaktig formen [tex]\sum_{n = 1}^\infty \frac{1}{n^p}[/tex]. Her har du jo noe annet enn 1 i telleren. Men du kan sammenligne med en p-rekke. Er du enig i at hvis det ikke hadde vært for 1-leddet i telleren så hadde du hatt rekken [tex]\sum_{n=1}^\infty \frac{n}{n^2} = \sum_{n=1}^\infty \frac{1}{n}[/tex]?

Posted: 01/12-2011 22:38
by laks34
hmm.. 1/n alltid vil være mindre eller lik 1 + n / n^2 for en eller annen n>N? Og det vil igjen si at fordi 1/n divergerer så må også (1+n)/n^2 divergere? :D

Hva sier man for "converges conditionally" på norsk egentlig?

Posted: 01/12-2011 22:42
by Vektormannen
Det er helt riktig tenkt det! :) Faktisk vil det jo gjelde for alle [tex]n \geq 1[/tex] at [tex]\frac{n+1}{n^2} > \frac{n}{n^2} = \frac{1}{n}[/tex].

På norsk sier man at rekken er "betinget konvergent".

Posted: 01/12-2011 22:45
by laks34
du fant N bare ved å se på rekkene? er det lurt å ha med verdi for N på eksamen? :)

Posted: 01/12-2011 22:48
by Vektormannen
Jeg tenkte ikke over noen N i det hele tatt, for er det ikke egentlig selvsagt at tallet n+1 alltid er større enn n? Eneste grunnen til at jeg tok med [tex]n \geq 1[/tex] var at rekken starter med n = 1. Jeg kunne like godt ha skrevet at "for alle n er ...".

Men hvis du gjør en sammenligning der ulikheten kun gjelder for n større enn en viss verdi så må du huske å skrive ned det.

Posted: 03/12-2011 14:29
by laks34
Nytt problem: Hva gjør jeg hvis det ikke står (-1)^n, men f.e eks. (-2)^n?

Holder på med rekken:

((-2)^(n+1))/(n+5^n)

hva får jeg når jeg tar absoluttverdien av denne rekken?
blir det..

2/(n+5^n) ?

eller må jeg ha med: 2^(n+1) ?

Posted: 03/12-2011 17:48
by Vektormannen
Du må ha med eksponenten til 2-faktoren ja! Husk at absoluttverdifunksjonen kun gjør alt positivt. Den forandrer ikke tallverdien av uttrykket.

Posted: 03/12-2011 19:53
by Charlatan
Vektormannen wrote:Du må ha med eksponenten til 2-faktoren ja! Husk at absoluttverdifunksjonen kun gjør alt positivt. Den forandrer ikke tallverdien av uttrykket.
Jo, den gjør det, for man tar absoluttverdien av hvert term.

Rekka di er alternerende og konvergerer siden termene går mot 0 som du sier laks, men dersom man tar absoluttverdien av hvert term får man ei rekke som ikke konvergerer (som Vektormannen har forklart godt). Dette betyr at rekka ikke konvergerer absolutt, og vi sier at den "converges conditionally".

Posted: 03/12-2011 20:32
by Vektormannen
Absoluttverdien forandrer ikke tallverdien av hvert ledd var det vel jeg mente. Litt uklart ja :P

Posted: 04/12-2011 12:10
by laks34
Tusen takk for all hjelp! :D