Page 1 of 1
vgs likning
Posted: 15/11-2011 20:48
by Janhaa
løs vgs likningssystemet:
[tex]\frac{1}{x+y}\,+\,x=3[/tex]
[tex]\frac{x}{x+y}=2[/tex]
Posted: 15/11-2011 23:02
by Kork
Jeg føler at algebraen sitter bra, men jeg blir stadig i stuss over hva jeg egentlig holder på med når jeg jobber med likningssett. Andre som føler det samme? =P

Posted: 15/11-2011 23:26
by Nebuchadnezzar
Janhaa wrote:løs vgs likningssystemet:
[tex]\frac{1}{x+y}\,+\,x=3[/tex]
[tex] \frac{x}{x+y}=2[/tex]
Vi ganger øverste likning med x
[tex]\frac{x}{x+y}\,=3x-x^2[/tex]
Også innsetning i nederste
Kanskje janhaa, har en enda smartere løsning?
Posted: 17/11-2011 16:33
by Brahmagupta
Løste tilfeldigvis akkuratt denne for litt siden. Er vel fra Georg Mohr konkurransen i Danmark, første runde.
Posted: 21/11-2011 09:11
by mstud
Nebuchadnezzar wrote:Janhaa wrote:løs vgs likningssystemet:
[tex]\frac{1}{x+y}\,+\,x=3[/tex]
[tex] \frac{x}{x+y}=2[/tex]
Vi ganger øverste likning med x
[tex]\frac{x}{x+y}\,=3x-x^2[/tex]
Også innsetning i nederste
Kanskje janhaa, har en enda smartere løsning?
Min kommentar:
da har du bare funnet x fra [tex]3x-x^2=2[/tex]... Skriv hva du vil gjøre med y også siden det er et ligningssett det er snakk om her^^ (Jeg vet at du vet det, men du skrev det ikke), Nebu...
Posted: 21/11-2011 13:40
by Nebuchadnezzar
[tex]\frac{x}{x+y} \, = \, 2[/tex]
[tex]\frac{x+y}{x} \, = \, \frac{1}{2}[/tex]
[tex]\frac{y}{x} \, = \, \frac{1}{2} - 1[/tex]
[tex]y \, = \, - \frac{1}{2}x [/tex]