Page 1 of 1

faktorisering

Posted: 25/10-2011 12:06
by Oddis88
Kan vi skrive om

[tex](k+1)^3-(k+1) = k^3+3k^2+3k+1-k-1 = k^3-k + 3(k+1)[/tex]

??

Posted: 25/10-2011 12:37
by Nebuchadnezzar
Induksjon ja, dette går fint. Antar du skal vise at det alltid er delelig på 3.

Vis at k^3 - k er tre påfølgende heltall, ett av disse vil alltid være delelig på 3. Så er beviste ditt i boks.

Posted: 25/10-2011 15:16
by Oddis88
Tusen takk nebu.. Sitter og frisker opp i induksjon. Så var det faktoriseringen jeg ble usikker på :oops: .

Takk for svar.. (n+1)n(n-1) er med i beviset ja :)

Re: faktorisering

Posted: 26/10-2011 12:12
by Thales
Oddis88 wrote:Kan vi skrive om

[tex](k+1)^3-(k+1) = k^3+3k^2+3k+1-k-1 = k^3-k + 3(k+1)[/tex]

??
eller rett og slett:

[tex](k+1)^3-(k+1) = (k+1)((k+1)^2-1) = (k+1)(k^2+2k)=k(k+1)(k+2)[/tex]

Som altså er tre påfølgende tall ;)