System av likninger
Posted: 06/08-2011 12:21
Skriver den småartige oppgaven her jeg, tar den på engelsk. For å unngå missforståelser =)
----------------
Let [tex]d_1, d_2, \cdots ,d_n [/tex] be odd positive integer , and let [tex]f_1(x_1, x_2, \cdots x_n), f_2(x_1, x_2, \cdots x_n), \cdots , f_n(x_1, x_2, \cdots x_n)[/tex] be real-coefficient polynomials with degree at most [tex]d_1 - 1, d_2 - 1, \cdots ,d_n - 1[/tex] respectively. Consider the system of equations [tex]x_i^{d_i} =f_i(x_1, x_2, \cdots x_n) , i = 1, 2, \cdots , n[/tex]. Prove that there is a solution of this system of equations in [tex]\mathbb{R}^n [/tex].
----------------
Let [tex]d_1, d_2, \cdots ,d_n [/tex] be odd positive integer , and let [tex]f_1(x_1, x_2, \cdots x_n), f_2(x_1, x_2, \cdots x_n), \cdots , f_n(x_1, x_2, \cdots x_n)[/tex] be real-coefficient polynomials with degree at most [tex]d_1 - 1, d_2 - 1, \cdots ,d_n - 1[/tex] respectively. Consider the system of equations [tex]x_i^{d_i} =f_i(x_1, x_2, \cdots x_n) , i = 1, 2, \cdots , n[/tex]. Prove that there is a solution of this system of equations in [tex]\mathbb{R}^n [/tex].