nontrivial og trivial

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk på høyskolenivå. Alle som har kunnskapen er velkommen med et svar. Men, ikke forvent at admin i matematikk.net er spesielt aktive her.

Moderators: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa

lodve
Hilbert
Hilbert
Posts: 1034
Joined: 15/09-2005 15:50

Hva er det på norsk? takk :D
FredrikM
Poincare
Poincare
Posts: 1367
Joined: 28/08-2007 20:39
Location: Oslo
Contact:

Ikke-triviell/triviell.
Cube - mathematical prethoughts | @MatematikkFakta
Med forbehold om tullete feil. (både her og ellers)
lodve
Hilbert
Hilbert
Posts: 1034
Joined: 15/09-2005 15:50

på matematisk :P?
Vektormannen
Euler
Euler
Posts: 5889
Joined: 26/09-2007 19:35
Location: Trondheim
Contact:

Det kommer vel an på sammenhengen, men som regel mener man det samme som ordet betyr på norsk. Noe trivielt er noe som det ikke er noe spesielt ved, noe ordinært eller 'selvsagt'.

F.eks. har alle ligninger på formen [tex]a_1x_1 + a_2x_2 + ... + a_nx_n = 0[/tex] den trivielle løsningen [tex](x_1, x_2, ..., x_n) = (0, 0, ..., 0)[/tex]. Hvis alle variablene er 0, så får du jo nettopp 0 på venstre side. Men denne løsningen er du sikkert enig i at det ikke er noe spesielt ved -- den forekommer jo i alle slike ligninger.

Kan du utdype i hvilken sammenheng du har kommet over disse ordene?
Elektronikk @ NTNU | nesizer
lodve
Hilbert
Hilbert
Posts: 1034
Joined: 15/09-2005 15:50

Hei, jo det var bare en oppgave jeg stusset over som ba meg om å finne ut om den hadde nontrivial solution for likningen

-3x1 + 5x2 - 7x3 = 0
-6x1 + 7x2 + x3 = 0

men jeg skjønner ikke hvordan man finner ut om ligninga er ikke triviell. kan noen her hjelpe meg?
lodve
Hilbert
Hilbert
Posts: 1034
Joined: 15/09-2005 15:50

bump!
Vektormannen
Euler
Euler
Posts: 5889
Joined: 26/09-2007 19:35
Location: Trondheim
Contact:

Hva med å prøve å løse systemet?

Evt. tenk på dette som ligninger for to plan. Er planene parallelle? Kan du ut fra det finne ut om ligningssettet har ikke-trivielle løsninger?
Elektronikk @ NTNU | nesizer
lodve
Hilbert
Hilbert
Posts: 1034
Joined: 15/09-2005 15:50

Hei, jeg skjønner jo at når to plan ikke skjærer hverandre så vil de ikke ha noen løsning, jeg har brukt elementær radoperasjon, men jeg klarer liksom ikke å finne den frie variabelen.
Vektormannen
Euler
Euler
Posts: 5889
Joined: 26/09-2007 19:35
Location: Trondheim
Contact:

Hvordan har du brukt elementære radoperasjoner da? (Jeg antar Gauss-eliminasjon?) Hva ender du opp med?

Hvis du har fullført Gauss-Jordan-eliminasjon bør du ende opp med
[tex]x_1 - 6x_3 = 0[/tex]
[tex]x_2 - 5x_3 = 0[/tex]
og da er det enklest om du lar [tex]x_3 = t[/tex] være fri variabel.
Elektronikk @ NTNU | nesizer
lodve
Hilbert
Hilbert
Posts: 1034
Joined: 15/09-2005 15:50

åja, jeg fikk samme svar som deg, men hvordan vet jeg hva som er fri variabel? riktig Gauss eliminasjonsmetode ;)
Vektormannen
Euler
Euler
Posts: 5889
Joined: 26/09-2007 19:35
Location: Trondheim
Contact:

Du kan velge hvilken du vil som fri variabel. Det er enklest her å velge [tex]t = x_3[/tex]. Da har du umiddelbart at [tex]x_1 = 6t[/tex] og [tex]x_2 = 5t[/tex] -- altså vil alle tripler [tex](6t, 5t, t)[/tex] passe inn i ligningen (dette kan du jo lett sjekke ved å teste ut noen t-verdier, eller sette inn selve uttrykkene og se at du får 0.)

Men du kan like gjerne velge [tex]s = x_1[/tex] som fri variabel. Da har du [tex]x_3 = \frac{1}{6}s[/tex] og videre at [tex]x_2 = 5x_3 = 5 \cdot \frac{1}{6}s = \frac{5}{6}s[/tex]. Altså har du at alle tripler [tex](s, \frac{5}{6}s, \frac{1}{6}s)[/tex] også passer inn i ligningen. Men ser du litt nøye på dette, så ser du at dette gir akkurat den samme mengden med tripler som når [tex]x_3[/tex] velges som parameter. Lar man [tex]s = 6t[/tex] så får man nettopp det samme som ovenfor.
Elektronikk @ NTNU | nesizer
lodve
Hilbert
Hilbert
Posts: 1034
Joined: 15/09-2005 15:50

Hei, setter virkelig pris på at du hjelper meg :D

x1 - 3x2 + 7x3 = 0
-2x1 + x2 - 4x3 = 0
x1 + 2x2 + 9x3 = 0

ligningssystemet har ingen ikke-triviell løsning fordi det ikke finnes fri variabel fordi x1 = 0, x2 = og x3 = 0? fordi jeg har dette svaret to ganger nå, og har dessverre ingen fasitsvar på den. :P
Vektormannen
Euler
Euler
Posts: 5889
Joined: 26/09-2007 19:35
Location: Trondheim
Contact:

Hva mener du med at det ikke finnes fri variabel fordi den har triviell løsning? I den oppgaven du postet ovenfor var det både den trivielle null-løsningen (t = 0) og ikke-trivielle løsninger ([tex]t \neq 0[/tex]).
Elektronikk @ NTNU | nesizer
lodve
Hilbert
Hilbert
Posts: 1034
Joined: 15/09-2005 15:50

åja, ser den :P Du ga meg et klarere bildet nå :D
Vektormannen
Euler
Euler
Posts: 5889
Joined: 26/09-2007 19:35
Location: Trondheim
Contact:

Flott :)

For å summere det opp: slike ligningssett, med ligninger det står 0 på høyre side (kalles homogene ligninger), har alltid den trivielle null-løsningen. Som forklart over, dersom alle variablene er 0, så får du jo 0 på venstre side, og da må [tex]x_1 = x_2 = ... = x_n = 0[/tex] være en løsning.

Men i tillegg kan ligningssettet ha flere løsninger (ikke-trivielle) og det er dette oppgavene ber deg om å undersøke. Når du utfører Gauss-eliminasjonen, ender du opp med en eller flere frie variabler, ellers ender du opp med enere langs diagonalen (altså kun null-løsningen.)
Elektronikk @ NTNU | nesizer
Post Reply