Page 1 of 1

Finne maksimums-/minimumspunkter uten regning

Posted: 28/02-2010 19:56
by pavilion
Trenger litt repitisjon om hvordan jeg finner maksimums- og minimumspunkter uten regning - altså, kun ved å resonnere meg frem.

Eks.:

[tex]f(x)=\frac{8}{3x^2+4}[/tex]

Posted: 28/02-2010 20:04
by Audunss
Uten regning betyr her uten bruk av derivasjon?

En brøk vil vokse når teller vokser eller nevner synker, og den vil synke når teller synker eller nevner øker.

Siden teller her er en konstant kan du bare se på nevner. Nevner er en sum av en konstant og et x^2 ledd, det du må evaluere er x^2. Skal d finne maks til funksjonen må du finne minimum til nevnerer, og siden x^2 alltid er positiv vil x^2 ha minimum når x=0 og da har nevnerer minimum.

Posted: 28/02-2010 20:16
by pavilion
Uten derivasjon også, ja.

Takk for svar! Så cluet er å finne hvilken verdi av x som gjør f(x) størst mulig, og motsatt for minimumspunkt?

Posted: 28/02-2010 21:00
by Audunss
Ja, dette er poenget, men det er grenser for hvor vanskelige uttrykk du klarer uten derivering, og mange uttrykk vil gå mot top eller minimumsverdien når x går mot uendelig, så det bør du få med deg. Ellers kommer problemene ofte når en funksjon består av flere deler, der en del gjør at funksonen stiger når x stiger, mens en annen synker når x vokser, og da må du ofte inn med derivering.