Vanskelig derivasjon
Posted: 30/12-2009 01:18
Har litt problemer med å derivere dette stykket her.
Spesielt med tanke på algebraen på slutten og fin føring.
Noen tips til hvordan man skal føre dette stykket ordentlig, og tips til hvordan jeg fikser algebraen ?
[tex] f\left( x \right) = \frac{{{x^2}}}{{\cos \left( x \right)\sqrt {x + 4} }}[/tex]
[tex] \frac{u}{v} = \frac{u^{\prime}v - uv^{\prime}}{v^2}[/tex]
[tex] u = {x^2}{\rm{ and }}v = \cos \left( x \right)\sqrt {x + 4}[/tex]
[tex] u^{\prime} = 2x...[/tex]
[tex] \left( {fg} \right)^{\prime} = f^{\prime}g + fg^{\prime}[/tex]
[tex] f = \cos \left( x \right){\rm{ and }}\sqrt {x + 4} = g[/tex]
[tex] h\left( {p\left( x \right)} \right) = h^{\prime}\left( {p\left( x \right)} \right)p^{\prime}\left( x \right) [/tex]
[tex] h\left( x \right) = p{\left( x \right)^{1/2}}{\rm{ and p}}\left( x \right) = x + 4 [/tex]
[tex] h^{\prime}\left( x \right) = \frac{1}{{2p\left( x \right)}}{\rm{ and p^{\prime}}}\left( x \right) = 1 [/tex]
[tex] h^{\prime}\left( x \right) = \frac{1}{{2\sqrt {x + 4} }}{\rm{ }}[/tex]
[tex]f^{\prime} = - \sin \left( x \right) [/tex]
[tex] \left( {fg} \right)^{\prime} = \left( {\cos \left( x \right)} \right)^{\prime}\left( {\sqrt {x + 4} } \right) + \cos \left( x \right)\left( {\sqrt {x + 4} } \right)^{\prime} [/tex]
[tex] \left( {fg} \right)^{\prime} = - \sin \left( x \right)\left( {\sqrt {x + 4} } \right) + \cos \left( x \right)\left( {\frac{1}{{2\sqrt {x + 4} }}} \right) [/tex]
[tex] v^{\prime} = - \frac{{2\sin \left( x \right)x + 8\cos \left( x \right) - \cos \left( x \right)}}{{2\sqrt {x + 4} }} [/tex]
[tex] \frac{d}{{dx}}\frac{u}{v} = \frac{{u^{\prime}v - uv^{\prime}}}{{{v^2}}} [/tex]
[tex] \frac{d}{{dx}}\frac{u}{v} = \frac{{\left( {{x^2}} \right)^{\prime}\left( {\cos \left( x \right)\sqrt {x + 4} } \right) - \left( {{x^2}} \right)\left( {\cos \left( x \right)\sqrt {x + 4} } \right)^{\prime}}}{{{{\left( {\cos \left( x \right)\sqrt {x + 4} } \right)}^2}}} [/tex]
[tex] f^{\prime}(x)= \frac{{\left( {2x} \right)\left( {\cos \left( x \right)\sqrt {x + 4} } \right) - \left( {{x^2}} \right)\left( { - \frac{{2\sin \left( x \right)x + 8\cos \left( x \right) - \cos \left( x \right)}}{{2\sqrt {x + 4} }}} \right)}}{{{{\left( {\cos \left( x \right)\sqrt {x + 4} } \right)}^2}}}[/tex]
Så er dette rett ? Eventuelt hva gjør jeg videre for å rydde opp svaret mitt.
Spesielt med tanke på algebraen på slutten og fin føring.
Noen tips til hvordan man skal føre dette stykket ordentlig, og tips til hvordan jeg fikser algebraen ?
[tex] f\left( x \right) = \frac{{{x^2}}}{{\cos \left( x \right)\sqrt {x + 4} }}[/tex]
[tex] \frac{u}{v} = \frac{u^{\prime}v - uv^{\prime}}{v^2}[/tex]
[tex] u = {x^2}{\rm{ and }}v = \cos \left( x \right)\sqrt {x + 4}[/tex]
[tex] u^{\prime} = 2x...[/tex]
[tex] \left( {fg} \right)^{\prime} = f^{\prime}g + fg^{\prime}[/tex]
[tex] f = \cos \left( x \right){\rm{ and }}\sqrt {x + 4} = g[/tex]
[tex] h\left( {p\left( x \right)} \right) = h^{\prime}\left( {p\left( x \right)} \right)p^{\prime}\left( x \right) [/tex]
[tex] h\left( x \right) = p{\left( x \right)^{1/2}}{\rm{ and p}}\left( x \right) = x + 4 [/tex]
[tex] h^{\prime}\left( x \right) = \frac{1}{{2p\left( x \right)}}{\rm{ and p^{\prime}}}\left( x \right) = 1 [/tex]
[tex] h^{\prime}\left( x \right) = \frac{1}{{2\sqrt {x + 4} }}{\rm{ }}[/tex]
[tex]f^{\prime} = - \sin \left( x \right) [/tex]
[tex] \left( {fg} \right)^{\prime} = \left( {\cos \left( x \right)} \right)^{\prime}\left( {\sqrt {x + 4} } \right) + \cos \left( x \right)\left( {\sqrt {x + 4} } \right)^{\prime} [/tex]
[tex] \left( {fg} \right)^{\prime} = - \sin \left( x \right)\left( {\sqrt {x + 4} } \right) + \cos \left( x \right)\left( {\frac{1}{{2\sqrt {x + 4} }}} \right) [/tex]
[tex] v^{\prime} = - \frac{{2\sin \left( x \right)x + 8\cos \left( x \right) - \cos \left( x \right)}}{{2\sqrt {x + 4} }} [/tex]
[tex] \frac{d}{{dx}}\frac{u}{v} = \frac{{u^{\prime}v - uv^{\prime}}}{{{v^2}}} [/tex]
[tex] \frac{d}{{dx}}\frac{u}{v} = \frac{{\left( {{x^2}} \right)^{\prime}\left( {\cos \left( x \right)\sqrt {x + 4} } \right) - \left( {{x^2}} \right)\left( {\cos \left( x \right)\sqrt {x + 4} } \right)^{\prime}}}{{{{\left( {\cos \left( x \right)\sqrt {x + 4} } \right)}^2}}} [/tex]
[tex] f^{\prime}(x)= \frac{{\left( {2x} \right)\left( {\cos \left( x \right)\sqrt {x + 4} } \right) - \left( {{x^2}} \right)\left( { - \frac{{2\sin \left( x \right)x + 8\cos \left( x \right) - \cos \left( x \right)}}{{2\sqrt {x + 4} }}} \right)}}{{{{\left( {\cos \left( x \right)\sqrt {x + 4} } \right)}^2}}}[/tex]
Så er dette rett ? Eventuelt hva gjør jeg videre for å rydde opp svaret mitt.