derivasjon på "gamle"-måten
Posted: 22/09-2009 18:06
Sliter litt med rotregninga i denne oppgaven, så langt har jeg kommet:
[tex]f(x) = {2 \over {\sqrt {4 - x} }}[/tex]
[tex]{{df} \over {dx}} ={\lim }\limits_{h \to 0} {{f(x + h) - f(x)} \over h}[/tex]
[tex]={\lim }\limits_{h \to 0} {{{2 \over {\sqrt {4 - (x + h)} }} - {2 \over {\sqrt {4 - x} }}} \over h}[/tex]
[tex]={\lim }\limits_{h \to 0} {{{{2\sqrt {4 - x} - 2\sqrt {4 - (x + h)} } \over {\sqrt {4 - (x + h)} \cdot \sqrt {4 - x} }}} \over h}[/tex]
[tex]={\lim }\limits_{h \to 0} {{2(\sqrt {4 - x} - \sqrt {4 - (x + h)} )} \over {h\sqrt {[4 - (x + h)] \cdot [4 - x]} }}[/tex]
[tex]={\lim }\limits_{h \to 0} {{2(\sqrt {4 - x} - \sqrt {4 - (x + h)} )} \over {h\sqrt {16 - 4x - 4h - 4x + {x^2} + hx} }}[/tex]
[tex]={\lim }\limits_{h \to 0} {{2(\sqrt {4 - x} - \sqrt {4 - (x + h)} )} \over {h\sqrt {{{(4 - x)}^2} - 4h + hx} }}[/tex]
where to now?
jeg aner fortegnsfeil...
[tex]f(x) = {2 \over {\sqrt {4 - x} }}[/tex]
[tex]{{df} \over {dx}} ={\lim }\limits_{h \to 0} {{f(x + h) - f(x)} \over h}[/tex]
[tex]={\lim }\limits_{h \to 0} {{{2 \over {\sqrt {4 - (x + h)} }} - {2 \over {\sqrt {4 - x} }}} \over h}[/tex]
[tex]={\lim }\limits_{h \to 0} {{{{2\sqrt {4 - x} - 2\sqrt {4 - (x + h)} } \over {\sqrt {4 - (x + h)} \cdot \sqrt {4 - x} }}} \over h}[/tex]
[tex]={\lim }\limits_{h \to 0} {{2(\sqrt {4 - x} - \sqrt {4 - (x + h)} )} \over {h\sqrt {[4 - (x + h)] \cdot [4 - x]} }}[/tex]
[tex]={\lim }\limits_{h \to 0} {{2(\sqrt {4 - x} - \sqrt {4 - (x + h)} )} \over {h\sqrt {16 - 4x - 4h - 4x + {x^2} + hx} }}[/tex]
[tex]={\lim }\limits_{h \to 0} {{2(\sqrt {4 - x} - \sqrt {4 - (x + h)} )} \over {h\sqrt {{{(4 - x)}^2} - 4h + hx} }}[/tex]
where to now?
jeg aner fortegnsfeil...