sikkert ikke enkleste løsningen men
[tex]I=\int\frac{2x+1}{x^2-x+1}\quad\mathrm{d}x=\int\frac{2x+1}{\left(x-\frac{1}{2}\right)^2+\frac{7}{4}}\quad\mathrm{d}x[/tex]
[tex]u=\left(x-\frac{1}{2}\right)\Leftrightarrow x=u+\frac{1}{2}[/tex]
[tex]\mathrm{d}u=\mathrm{d}x[/tex]
[tex]I=\int\frac{2u+2}{u^2+\frac{7}{4}}\quad\mathrm{d}u[/tex]
[tex]I_1=\int\frac{2u}{u^2+\frac{7}{4}}\quad\mathrm{d}u[/tex]
[tex]I_2=\int\frac{2}{u^2+\frac{7}{4}}\quad\mathrm{d}u=\int\frac{2}{\frac{7}{4}\left(\frac{4}{7}u^2+1\right)}\quad\mathrm{d}u=\frac{8}{7}\int\frac{1}{\left(\frac{4}{7}u^2+1\right)}\quad\mathrm{d}u[/tex]
[tex]I_1:\quad v={u^2+\frac{7}{4}}\Rightarrow \mathrm{d}u=\frac{1}{2u}\mathrm{d}v\Rightarrow I_1=\int\frac{1}{v}\quad\mathrm{d}v=\ln(v)=\ln\left(u^2+\frac{7}{4}\right)=\ln\left(x^2-x+2\right)[/tex]
[tex]I_2:\quad z=\sqrt{\frac{4}{7}}u\Rightarrow \sqrt{\frac{7}{4}}\mathrm{d}z=\mathrm{d}u\Rightarrow I_2=\frac{8}{7}\sqrt{\frac{7}{4}}\int\frac{1}{z^2+1}\mathrm{d}z=\frac{4}{\sqrt{7}}\tan^{-1}(z)=\frac{4}{\sqrt{7}}\tan^{-1}\left(\sqrt{\frac{4}{7}}u\right)=\frac{4}{\sqrt{7}}\tan^{-1}\left(\frac{2}{\sqrt{7}}\left(x-\frac{1}{2}\right)\right)=\frac{4}{\sqrt{7}}\tan^{-1}\left(\frac{2x-1}{\sqrt{7}}\right)[/tex]
[tex]I=I_1+I_2=\ln\left(x^2-x+2\right)+\frac{4}{\sqrt{7}}\tan^{-1}\left(\frac{2x-1}{\sqrt{7}}\right)+C[/tex]