Det første jeg tenkte på var symmetriske grupper, f.eks. [tex]S_8[/tex]:
På syklisk form vil vel denne være generert av
(1,2,3,4,5,6,7,8) og (1,2)(3,4,5,6,7,8), altså 2 element, mens man har ei undergruppe generert av f.eks.
(1,2)(3,4,5,6,7,8), (3,4)(1,2,5,6,7,8) og (5,6)(1,2,3,4,7,8) ?
Mulig jeg tar helt feil altså.. (Har hatt mat2200 på uio, lenger enn det har jeg ikke kommet innen gruppeteori
Med notasjonen mener jeg
(1,2,3)(4,5...) betyr at g(1)=2, g(2)=3, g(3)=1,g(4)=4,g(5)=5, etc.. for en bijeksjon g.