Page 1 of 1
Sannsynlighet
Posted: 18/03-2009 13:57
by cantora
I et lotteri selges det 100 lodd. Av disse er det tre lodd som gir gevinst.
a) Hva er sannsynligheten for å vinne for en som kjøper ett ledd?
b) Hva er sannsynligheten for å vinne for en som kjøper ti lodd?
c) Hva er sannsynligheten for å vinne for en som kjøper 90 lodd?
Hvordan regner/setter man opp dette?
Posted: 18/03-2009 15:45
by espen180
Her må du bruke en hypergeometerisk sannsynlighetsmodell.
Vi deler [tex]n[/tex] elementer i to grupper [tex]D[/tex] og [tex]\bar{D}[/tex] med [tex]m[/tex] elementer i [tex]D[/tex]. Vi trekker så [tex]r[/tex] tilfeldige elementer uten tilbakelegging:
[tex]P(\text{k elementer fra D})=\frac{{m\choose k}{{n-m}\choose{r-k}}}{{n \choose r}}[/tex]
Klarer du å sette opp oppgaven nå?

Posted: 18/03-2009 16:53
by cantora
Beklager, men denne må du nok sette opp for meg hvis du orker.
Posted: 18/03-2009 18:43
by Thales
espen180 wrote:Her må du bruke en hypergeometerisk sannsynlighetsmodell.
Vi deler [tex]n[/tex] elementer i to grupper [tex]D[/tex] og [tex]\bar{D}[/tex] med [tex]m[/tex] elementer i [tex]D[/tex]. Vi trekker så [tex]r[/tex] tilfeldige elementer uten tilbakelegging:
[tex]P(\text{k elementer fra D})=\frac{{m\choose k}{{n-m}\choose{r-k}}}{{n \choose r}}[/tex]
Klarer du å sette opp oppgaven nå?

Jeg tror ikke han har så avansert matte etter oppgaven å dømme
Re: Sannsynlighet
Posted: 18/03-2009 18:57
by Gustav
cantora wrote:I et lotteri selges det 100 lodd. Av disse er det tre lodd som gir gevinst.
a) Hva er sannsynligheten for å vinne for en som kjøper ett ledd?
b) Hva er sannsynligheten for å vinne for en som kjøper ti lodd?
c) Hva er sannsynligheten for å vinne for en som kjøper 90 lodd?
Hvordan regner/setter man opp dette?
Hei,
På a) er det bare å bruke gunstige/mulige.
På b) kan det lønne seg å beregne komplementet først: hva er sannsynligheten for ikke å vinne?
Posted: 19/03-2009 19:22
by kimla
Edit: Bare rot!

Posted: 25/03-2009 14:30
by prasa93
Bumper denne i håp om å få et svar. Fikk selv denne på tentamen (tiende klasse) og var ganske langt unna et svar. Samme oppgave ligger ute på ungdomsskole og nedover-forumet, så dere kan svare der om dere ønsker / vil.

Posted: 25/03-2009 14:33
by Gustav
a)
[tex]P=\frac{3}{100}[/tex]
b)
[tex]P=1-\frac{97*96*95*94*93*92*91*90*89*88}{100*99*98*...*91}[/tex]
Skal jeg ta den siste også?
Posted: 25/03-2009 14:38
by prasa93
Nope - trengs ikke. (Om du likevel vil, er det bare å sette i gang. Jeg taper ikke ikke noe på, vinner bare en fremgangsmetode) Fikk bare de to på prøven i dag, og kan glemme å få poeng på b'en.
Takker for hjelpen.
EDIT: Lurer dog på hvordan vi skulle løse denne uten kalkulator ...
Posted: 25/03-2009 14:42
by Gustav
Vel, jeg tar den like godt:
c) Sannsynligheten her blir den samme som komplementet til sannsynligheten for at alle tre vinnerloddene er blant de 10 som ikke velges ut, så vi får
[tex]1-\frac{3*2*1}{100*99*98}*\frac{10*9*8}{3*2}[/tex]
Posted: 25/03-2009 14:45
by Gustav
prasa93 wrote:Nope - trengs ikke. (Om du likevel vil, er det bare å sette i gang. Jeg taper ikke ikke noe på, vinner bare en fremgangsmetode) Fikk bare de to på prøven i dag, og kan glemme å få poeng på b'en.
Takker for hjelpen.
EDIT: Lurer dog på hvordan vi skulle løse denne uten kalkulator ...
Vel, mange av tallene faller jo vekk, men jeg skulle tro at du bare trengte å sette opp en riktig brøk..