Page 1 of 1

Komplekse fjerderøtter

Posted: 28/01-2009 15:45
by Realist1
Hva gjør jeg feil i denne oppgaven?

4.71 Finn fjerderøttene til [tex]z=-8+ i8\sqrt{3}[/tex]

Min utregning:
[tex]z=-8 + i8 \sqrt{3}[/tex]
[tex]w^4 = z \Leftrightarrow w = \sqrt[4]{z}[/tex]

[tex]r=\sqrt{(-8)^2+(8\sqrt{3})^2} = \sqrt{64 + 64\cdot 3} = \sqrt{256} = \underline{16}[/tex]

[tex]cos \theta = \frac{x}{r} = \frac{-8}{16} = -\frac12 \Rightarrow \underline{\theta = 240^o}[/tex]

[tex]z=16e^{240^oi}[/tex]

[tex]w = \sqrt[4]{16}e^{\frac{240}{4}^oi} = 2e^{60^oi}[/tex]

[tex]w_1 = 2(\cos{60^o} + i\sin{60^o}) = 2\left(\frac12+ i\frac{\sqrt 3}{2}\right) = \underline{\underline{1 + \sqrt{3}i}}[/tex]

[tex]w_2 = 2e^{150^oi} = 2(\cos{150^o} + i\sin{150^o}) = 2\left(-\frac{\sqrt 3}{2}+ \frac12 i\right) = \underline{\underline{-\sqrt 3 + i}}[/tex]

[tex]w_3 = 2e^{240^oi} = 2(\cos{240^o} + i\sin{240^o}) = 2\left(-\frac{1}{2} - \frac{\sqrt 3}{2} i\right) = \underline{\underline{-1 - \sqrt{3}i}}[/tex]

[tex]w_4 = 2e^{330^oi} = 2(\cos{330^o} + i\sin{330^o}) = 2\left(\frac{\sqrt 3}{2} - \frac12 i\right) = \underline{\underline{\sqrt 3 - i}}[/tex]



Fasiten sier:
[tex]\sqrt 3 + i[/tex]
[tex]-1 + i\sqrt 3[/tex]
[tex]-\sqrt 3 - i[/tex]
[tex]1 - i\sqrt 3[/tex]
Altså, har jeg INGEN rette :lol: Men jeg er jo temmelig nærmt da? :) Noen som ser feilen?

Re: Komplekse fjerderøtter

Posted: 28/01-2009 15:51
by Janhaa
Realist1 wrote:Hva gjør jeg feil i denne oppgaven?
4.71 Finn fjerderøttene til [tex]z=-8+ i8\sqrt{3}[/tex]
Min utregning:
[tex]z=-8 + i8 \sqrt{3}[/tex]
[tex]w^4 = z \Leftrightarrow w = \sqrt[4]{z}[/tex]
[tex]r=\sqrt{(-8)^2+(8\sqrt{3})^2} = \sqrt{64 + 64\cdot 3} = \sqrt{256} = \underline{16}[/tex]
[tex]cos \theta = \frac{x}{r} = \frac{-8}{16} = -\frac12 \Rightarrow \underline{\theta = 240^o}[/tex]
[tex]z=16e^{240^oi}[/tex]
[tex]w = \sqrt[4]{16}e^{\frac{240}{4}^oi} = 2e^{60^oi}[/tex]
[tex]w_1 = 2(\cos{60^o} + i\sin{60^o}) = 2\left(\frac12+ i\frac{\sqrt 3}{2}\right) = \underline{\underline{1 + \sqrt{3}i}}[/tex]
[tex]w_2 = 2e^{150^oi} = 2(\cos{150^o} + i\sin{150^o}) = 2\left(-\frac{\sqrt 3}{2}+ \frac12 i\right) = \underline{\underline{-\sqrt 3 + i}}[/tex]
[tex]w_3 = 2e^{240^oi} = 2(\cos{240^o} + i\sin{240^o}) = 2\left(-\frac{1}{2} - \frac{\sqrt 3}{2} i\right) = \underline{\underline{-1 - \sqrt{3}i}}[/tex]
[tex]w_4 = 2e^{330^oi} = 2(\cos{330^o} + i\sin{330^o}) = 2\left(\frac{\sqrt 3}{2} - \frac12 i\right) = \underline{\underline{\sqrt 3 - i}}[/tex]
Fasiten sier:
[tex]\sqrt 3 + i[/tex]
[tex]-1 + i\sqrt 3[/tex]
[tex]-\sqrt 3 - i[/tex]
[tex]1 - i\sqrt 3[/tex]
Altså, har jeg INGEN rette :lol: Men jeg er jo temmelig nærmt da? :) Noen som ser feilen?
Z ligger i 2. kvadrant, men din vinkel ligger (theta) er i 3. kvadrant. Titt på det først...

Posted: 28/01-2009 15:53
by Realist1
Ai, den er pinlig. Skylder på at jeg ikke hadde kalkulator :D Tenkte bare at cos240=-0,5, så skrev jeg det. Jaja, lesson learned. Før jeg begynner å regne videre; vet du om jeg kommer til å få riktig svar om jeg setter theta lik 120 grader istedenfor, eller om det er mer som er feil?

Posted: 28/01-2009 15:54
by Janhaa
Realist1 wrote:Ai, den er pinlig. Skylder på at jeg ikke hadde kalkulator :D Tenkte bare at cos240=-0,5, så skrev jeg det. Jaja, lesson learned. Før jeg begynner å regne videre; vet du om jeg kommer til å få riktig svar om jeg setter theta lik 120 grader istedenfor, eller om det er mer som er feil?
ja...ser sånn ut