Page 1 of 1

integrasjon ved substitusjon

Posted: 12/01-2009 19:52
by Melhus1990
sliter med denne:

[symbol:integral] (x+1) e^(x^2 + 2X) dx (opphøyd i X i andre + 2X)

håper på hjelp!

Posted: 12/01-2009 19:55
by Vektormannen
[tex]u = x^2 + 2x[/tex]

[tex]\frac{du}{dx} = 2x + 2 = 2(x+1)[/tex]

Ser du hva som kan gjøres nå?

Posted: 12/01-2009 20:43
by Melhus1990
jepp takk for hjelpen!
nå kan du bryne deg på denne:

[symbol:integral] 2e^(0,1X+2) dx

Posted: 12/01-2009 22:04
by drgz
Melhus1990 wrote:jepp takk for hjelpen!
nå kan du bryne deg på denne:

[symbol:integral] 2e^(0,1X+2) dx
hva med å prøve selv? ;)

Posted: 12/01-2009 22:19
by Melhus1990
det prøvde jeg naturligvis på først:)

Posted: 12/01-2009 22:28
by meCarnival
Og hvor stoppet du hen da?

Posted: 12/01-2009 22:30
by zell
[tex]\int e^{kx}\rm{d}x = \frac{1}{k}e^{kx} + C[/tex]

Posted: 03/02-2009 18:00
by Melhus1990
skal nå repetere til prøve i dette her;)

har et generelt spm: hvordan ser jeg lett hvilket ledd jeg ska substitutere med u?
f.eks.
[symbol:integral] (X+1) / X

Hva blir u her?

Posted: 03/02-2009 18:17
by zell
Her er det ingen vits i å substituere.

[tex]\int \frac{x+1}{x}\rm{d}x = \int\rm{d}x+\int\frac{1}{x}\rm{d}x[/tex]