Page 1 of 1
					
				2sinx + cos x = 2
				Posted: 14/12-2008 22:56
				by sindresa
				2sinx + cos x = 2
Noen som har et hint hvordan man løser denne...
			 
			
					
				
				Posted: 14/12-2008 23:01
				by Emilga
				Venstresiden kan du skrive om til en sinusfunksjon.
			 
			
					
				
				Posted: 14/12-2008 23:14
				by Vektormannen
				Ellers er det vel (tar forbehold om feil) mulig å kvadrere begge sider og styre litt på for å ende opp med en andregradssak.
			 
			
					
				
				Posted: 15/12-2008 01:06
				by ettam
				
			 
			
					
				
				Posted: 15/12-2008 20:01
				by sindresa
				Nice. Prøvde faktisk det, men da glemte jeg theta eller hva det nå enn het.
			 
			
					
				
				Posted: 15/12-2008 23:58
				by ettam
				sindresa wrote:men da glemte jeg theta eller hva det nå enn het.
"den" heter phi.
theta er [tex]\theta[/tex] (eller [tex]\Theta[/tex] (stor)).
Det greske alfabetet finner du 
her. Kjekt å kunne en del av det i hverfall... 

 
			
					
				
				Posted: 16/12-2008 22:17
				by 96xy
				Hei 
 
 
Er ikkje so inne på dette med sin cos tan likningar, men prøver meg allikevel; 
[tex] \ 2sinx + cosx = 2 [/tex] 
Viss ikkje eg hugsar feil so gjeld denne regelen her; 
[tex] \ sinx+cosx = 1 [/tex] 
Då får me at; 
[tex] \ cos x = 1 - sinx [/tex]
Då set me dette inn i den opprinnelege likninga; 
[tex] \ 2sinx + (1 - sinx) = 2 [/tex] 
[tex] \ sinx + 1 = 2 [/tex]
[tex] \ sinx = 1 [/tex]
[tex] \ x = arcsin(1) [/tex] 
[tex] \ x = 90 [/tex]
 
			
					
				
				Posted: 16/12-2008 22:19
				by Vektormannen
				96xy wrote:
Viss ikkje eg hugsar feil so gjeld denne regelen her; 
[tex] \ sinx+cosx = 1 [/tex] 
Nei, [tex]\sin^2 x + \cos^2 x = 1[/tex] holder alltid. (pytagoras)