Page 1 of 1

Omgjøring av cosinusformelen

Posted: 24/11-2008 09:10
by thrm
Hvordan gjør man om cosinusformelen sånn at man får Cos A ...

Cosinus:
a[sup]2[/sup]= b[sup]2[/sup] + c[sup]2[/sup] -2bc Cos A[/sup]

Posted: 24/11-2008 09:23
by Vektormannen
[tex]a^2 = b^2 + c^2 - 2bc \cdot \cos A[/tex]

[tex]-2bc \cdot \cos A = a^2 - b^2 - c^2[/tex]

[tex]\cos A = -\frac{a^2 - b^2 - c^2}{2bc}[/tex]

Posted: 24/11-2008 09:28
by thrm
Danke scön. Ich habe problemen med vektorer, og eksamen på onsdag.

Posted: 24/11-2008 11:16
by mepe
[tex]\cos A = -\frac{ b^2 + c^2-a^2}{2bc}[/tex]

er det vel! + stod et par linjer over, så kun feil i siste linje!!

Posted: 24/11-2008 11:59
by gabel
mepe wrote:[tex]\cos A = -\frac{ b^2 + c^2-a^2}{2bc}[/tex]
Stemmer den :)

Posted: 24/11-2008 20:40
by FredrikM
Synes minutstegn foran brøker ser så stygt ut, så for estetikkens skyld kan uttrykket endres til
[tex]\cos A =\frac{a^2-b^2-c^2}{2bc}[/tex]

Posted: 24/11-2008 20:57
by 2357
Hvis du ikke vil ha minustegnet foran blir det vel heller [tex]\cos A = \frac{b^2+c^2-a^2}{2bc}[/tex]?

[tex]a^2=b^2+c^2-2bc \cdot \cos A \\ 2bc \cdot \cos A = b^2+c^2-a^2 \\ \cos A =\frac{b^2+c^2-a^2}{2bc}[/tex]

Som er likt med Vektormannens [tex]\cos A = -\frac{a^2-b^2-c^2}{2bc}[/tex]

Posted: 24/11-2008 22:45
by FredrikM
Seff. Brukte feilinformert kilde.

Jeg siterte mepe, som hadde skrevet formelen feil for meg.