Page 1 of 1

dobbeltintegral

Posted: 17/11-2008 23:16
by Janhaa
Ett lite søtt dobbeltintegral krever eier;


[tex]I=\int_0^1 \, \int_{\sqrt[3]x}^{1}\frac{dydx}{1+y^4}[/tex]

Re: dobbeltintegral

Posted: 18/11-2008 12:04
by orjan_s
Janhaa wrote:Ett lite søtt dobbeltintegral krever eier;


[tex]I=\int_0^1 \, \int_{\sqrt[3]x}^{1}\frac{dydx}{1+y^4}[/tex]
skifter grenser og får:

[tex]I=\int_0^1 \, \int_0^{y^3} \frac{1}{1+y^4}\, dx\,dy=\int_0^1 \frac{y^3}{1+y^4} \,dy[/tex]

setter [tex]u=1+y^4[/tex] som gir

[tex]I=\frac{1}{4}\int_1^2 \frac{1}{u}=\frac{1}{4}[\ln{u}]_1^2=\frac{1}{4}(\ln{2}-\ln{1})=\underline {\underline{\frac{1}{4}\ln{2}}}[/tex]

Re: dobbeltintegral

Posted: 18/11-2008 13:16
by Janhaa
orjan_s wrote: skifter grenser og får:
[tex]I=\int_0^1 \, \int_0^{y^3} \frac{1}{1+y^4}\, dx\,dy=\int_0^1 \frac{y^3}{1+y^4} \,dy[/tex]
setter [tex]u=1+y^4[/tex] som gir
[tex]I=\int_1^2 \frac{1}{u}=[\ln{u}]_1^2=\ln{2}-\ln{1}=\underline {\underline{\ln{2}}}[/tex]
Blir vel;

[tex]I={1\over 4}\ln(2)[/tex]

ellers bra.

Posted: 18/11-2008 13:22
by orjan_s
jepp var litt for rask der :lol: