Page 1 of 1

Finne topp- og bunnpunkt til den deriverte

Posted: 20/10-2008 14:20
by matteprivatist
Hei!

Håper noen kan hjelpe meg litt med denne oppgaven:

F(x)= x2 • lnx x>0

a) Vis at den deriverte blir f’(x)= 2x•lnx+x
b) Finn eventuelle topp- og bunnpunkter ved regning
c) Finn eventuelle vendepunkter ved regning

Skjønte oppgave a), men sliter med oppgave b) og c).
Håper noen kan være så snille og hjelpe meg med dette! :)

Posted: 20/10-2008 14:21
by Aksiom
Vet du hva det betyr at den deriverte er lik 0?

yessir...

Posted: 20/10-2008 22:11
by matteprivatist
jada, bare trenger en måte å regne det ut på... ;)

Re: yessir...

Posted: 20/10-2008 22:15
by arildno
matteprivatist wrote:jada, bare trenger en måte å regne det ut på... ;)
Hva med å sette opp en passende likning?

Re: yessir...

Posted: 20/10-2008 22:17
by kimla
matteprivatist wrote:jada, bare trenger en måte å regne det ut på... ;)
Du regner det på normal måte som en likning:
[tex]2x \cdot ln(x) + x = 0[/tex]

Sett deretter verdien du finner av x inn i den originale funksjonen.

Posted: 20/10-2008 22:21
by arildno
VerdienE, kimla, verdienE..

Posted: 20/10-2008 22:33
by kimla
arildno wrote:VerdienE, kimla, verdienE..
Får man mer enn en verdi i denne likningen?

Posted: 20/10-2008 22:38
by Vektormannen
Ja, 2x ln(x) + x = x(2ln(x) + 1). Det er produktet av to faktorer som begge kan bli 0.

Posted: 20/10-2008 23:12
by kimla
Vektormannen wrote:Ja, 2x ln(x) + x = x(2ln(x) + 1). Det er produktet av to faktorer som begge kan bli 0.
Du tenker på faktoren 2ln(x) + 1? Jeg prøver ikke å være vanskelig, men ble litt usikker nå, når er det den kan bli 0? Er det ikke sånn at den bare kan bli tilnærmet 0??

Posted: 20/10-2008 23:20
by FredrikM
[tex]2\ln x+1=0 \\\ln x = -\frac{1}{2}\\x = e^{-\frac{1}{2}}[/tex]

[tex]f(x)=\ln x \\ V_f = \mathbb{R}[/tex]
Men
[tex]D_f=(0,\infty)[/tex]

Posted: 20/10-2008 23:21
by Vektormannen
ln(x) kan være hva som helst. Den er derimot kun definert for x > 0.

Posted: 20/10-2008 23:28
by kimla
Ahh, ja, bare jeg som roter med grunnreglene nå. :roll:

Takker for svar begge to. :)

Posted: 21/10-2008 11:54
by matteprivatist
nå skjønner jeg mindre enn da jeg startet... Tror jeg bare får ta det på egenhånd ;)

Re: Finne topp- og bunnpunkt til den deriverte

Posted: 21/10-2008 12:36
by mepe
matteprivatist wrote:Hei!

Håper noen kan hjelpe meg litt med denne oppgaven:

F(x)= x2 • lnx x>0

a) Vis at den deriverte blir f’(x)= 2x•lnx+x
b) Finn eventuelle topp- og bunnpunkter ved regning
c) Finn eventuelle vendepunkter ved regning

Skjønte oppgave a), men sliter med oppgave b) og c).
Håper noen kan være så snille og hjelpe meg med dette! :)
du har funnet f'(x) forstår jeg

b) for at finne evt topp og bunnpunkter må du finne der hvor f'(x) = 0
for det er når den deriverte = 0 at der er enten et topp/ eller bundpunkt

så hvis du omskriver
f(x) [tex]= 2x \cdot lnx +x[/tex] til
f'(x) [tex]= x(2lnx+1)[/tex]

så er det letter at se, at hvis

[tex]x= 0[/tex]

eller

[tex]2lnx+1=0[/tex]

[tex]lnx= -\frac{1}{2}[/tex]

[tex]x = e^{-\frac{1}{2}}[/tex]

x=ca. 061

er uttrykket 0
nu skal x>0
så vi kan ikke bruke den første, da den ikke er med i defn mengden

så vi får tegne et fortegnsskjema for den siste

[tex]x = ca 0,61[/tex] eller mer nøyaktigt [tex]x = e^{-\frac{1}{2}} [/tex]

og finne om det er et topppunkt eller bundpunkt.

når du har funnet det, setter du x-verdien inn i den oprindelige funksjon for at finne y-verdien.

- og så har du dit topp eller bundpunkt

c) vendepunkter finnes ved at sette den andrederiverte = 0

så deriver f'(x) een gang mer.. og set den lik 0.. og tegn et fortegnskjema og finn hvor funksjonen har den krumme side ned og opp!

håper dette hjalp! :D

Posted: 22/10-2008 15:45
by matteprivatist
tusen takk! :D var veldig hjelpsomt svar ;)