Page 1 of 1

Periodiske funksjoner

Posted: 08/04-2005 18:09
by Guest
Lurer på hvorfor

Sin(cx) + Cos(cx) <=> sin(cx+ [tom][/tom])

Jeg ser at det har sammenheng med terigonometriske identitet sin(u + v) = sin(u)·cos(v)+cos(u)·sin(v) , men jeg klarer ikke helt og se hvordan...?
Kan noen forklare dette beviset

På forhånd takk[tom][/tom]

Posted: 08/04-2005 18:27
by Guest
Surrer litt her, jeg mener:

aSin(cx) + bCos(cx) <=> Asin(cx+[tom][/tom] )

Jeg ser at det har sammenheng med terigonometriske identitet sin(u + v) = sin(u)·cos(v)+cos(u)·sin(v) , men jeg klarer ikke helt og se hvordan...?
Kan noen forklare dette beviset.. En annen ting... når man skal finne absolutverdien til (a,b) så virker det litt forvirrende med at (a=x, og b=y) siden Cos=a og Sin=b)... noen innvendinger på dette også?

På forhånd takk[tom][/tom]

Posted: 08/04-2005 18:54
by Kent
acos(cx) + bsin(cx) <=> Asin(cx+ [tom][/tom])
Står [tom][/tom] for den tomme mengde eller bare en skalar?
Skriver det som slik for enklere notasjon:
acos(cx) + bsin(cx) <=> Asin(cx+y)
Bruker den identiteten du skrev opp:
Asin(cx+y)=Acos(cx)cos(y)-Asin(cx)sin(y)
Det nye uttrykket er på samme formen som
acos(cx) + bsin(cx)
med koeffisientene
a=Acos(y)
b=-Asin(y)

tan(y)=sin(y)/cos(y)=-b/a
y=tan[sup]-1[/sup](-b/a)
har også at
a[sup]2[/sup]+b[sup]2[/sup]=A[sup]2[/sup](cos[sup]2[/sup](y)+sin[sup]2[/sup](y))=A[sup]2[/sup]
A=[rot][/rot](a[sup]2[/sup]+b[sup]2[/sup])

Derfor er
acos(cx)+bsin(cx)=[rot][/rot](a[sup]2[/sup]+b[sup]2[/sup])cos[cx+tan[sup]-1[/sup](-b/a)]=Acos(cx+y)

Rettet litt i begynnelsen, ble litt rot første gang.

Posted: 08/04-2005 18:58
by Kent
Anonymous wrote:En annen ting... når man skal finne absolutverdien til (a,b) så virker det litt forvirrende med at (a=x, og b=y) siden Cos=a og Sin=b)... noen innvendinger på dette også?
Forstod ikke helt hva du mente her, kan du omformulere?

Posted: 08/04-2005 20:20
by Guest
Jeg mente størrelsen (a,b) ved pytagoras... det som er forvirrende er at det refereres til koeffisientene, a for sinus og b for cosinus, slik at når en skal finne hvilken kvadrant vinklen gjelder så ser man på fortegnene til koordinatene (a,b).. men se på denne settningen hvor a og b står:

aSin(cx) + bCos(cx)

er ikke a=cosinus siden,a er X i et koordinat og , sin= b siden detter er Y... forstår du nå?

Posted: 08/04-2005 22:12
by Guest
Jeg forstår det hele om du forklarer resonnementet på at b=-Asin(y)

takk...

Posted: 08/04-2005 23:18
by Kent
acos(cx) + bsin(cx) <=> Asin(cx+y)
Det er formelen som skal bevises.
For å gjøre det, skrev jeg opp høyresiden på en annen måte:
Asin(cx+y)=Acos(cx)cos(y)-Asin(cx)sin(y)
Den første formelen stemmer hvis
Asin(cx+y)=acos(cx)+bsin(cx)=Acos(cx)cos(y)+(-Asin(cx)sin(y))
Dette stemmer når
acos(cx)=Acos(cx)cos(y)=Acos(y)cos(cx), og
bsin(cx)=-Asin(cx)sin(y)=-Asin(y)sin(cx)
For b kan man stryke sin(cx) (dividere på begge sider) og sitter igjen med
b=-Asin(y)
Tilsvarende for a.

Jeg forstod problemet ditt, men jeg har glemt hvordan det tolkes. Men hvis du har forstått det, kanskje du kan forklare?

Posted: 14/04-2005 19:14
by Guest
Trodde jeg skjønte det... kan noen forklare hvordan en skal tolke og hvorfor koordinatene er stokket om... gi noen eksempler, gjerne beviset også...

på forhånd takk