Page 1 of 1

Trigonometri spørsmål (3mx)

Posted: 09/06-2008 18:44
by supernoob
Enda en Trigonometri spørsmål.

Bruk symmetrier på enhetssirkelen til å finne en vinkel i første kvadrant som har samme cosinusverdi som v, når v er

A; 300 grade

B; -40 grade

C; 325 grade.

----------------------------------------------------------------------------------

Ikke helt sikker på hvordan jeg skal bruke enhetssirkelen her.

Skal jeg "dele" opp enhetsssirkelen i 2 hvor den ene biten tilsvare graden som er nevnt i A,B og C;?

Posted: 09/06-2008 19:02
by zell
Tegn den. :P

Du vil fort se at:

300 grader = -60 grader, og at cosinus har samme verdi for -60 grader og 60 grader (cosinus er langs x-aksen).

-40 grader = 40 grader

osv osv osv

Posted: 10/06-2008 18:49
by supernoob
Takk Zell

Hade håpt på en tegning av en lignende oppgave slik at jeg kunne bekrefte at jeg har "tegna" løsningen riktig

Posted: 10/06-2008 19:33
by zell
Du vil jo ikke klare å tegne en løsning feil.

Posted: 11/06-2008 21:12
by supernoob
Takk igjen Zell.

Lurte også litt på når du skal regne ut vinklene når V{[0[sup]o[/sup],360[sup]o[/sup]]


I noen oppgaver for eksemepel
[tex]Sinv=0,9[/tex]
Som blir 64,15[sup]o[/sup]

Svaret blir v=64,15 V v=180-64,15=115,85


Hvor man finner v ved å ta 180-v



Mens på noen oppgaver skal

du ta 360-v


Er det noen faste regler på når man skal bruke 360 og 180?
Håper spørsmålet ikke var for rotete

Posted: 11/06-2008 21:27
by Mari89
Ved å tegne opp enhetssirkelen med vinklene ser man kjapt hva man skal bruke. Enhetssirkelen er en veldig fin ting, den kan kanskje virke litt forvirrende i starten, men når en først har begynt å lære seg å bruke den blir alt mye enklere.

Posted: 11/06-2008 21:50
by mepe
Er helt enig i hvad der blir sagt - ler at bruke enhetssirklen - det er vigtigt at kunne den !!!!!

og så tenk på at
Sin-verdier avleses på y-aksen
og Cos- verdier avleses på x-aksen

så nar du har Sinv = 0,9
så går du 0,9 opp på y-aksen .. tegner en strek.. parallel med x-aksen.. og der hvor den skjærer enhetssirklen er dine vinkler... dvs. ved 64,15g og ved 115,85g ...
Den første kan du regne på kalkulatoren ... nr. 2 må du regne ved at si 180-64,15 = 115,85

når det er Cosv = 0,9 så er det x-aksen du skal gå 0,9 ut av tegne et ret linje parallel med y-aksen ... og der hvor den skjærer enhetssirklen, har du dine 2 vinkler... så ene vinkel er 25,84 og den annen er 360-25,84 = 334,16g

Så SinV er 180-v
og CosV er 360-v

Håper dette hjalp litt!

Posted: 11/06-2008 22:04
by Mari89
Litt viktig å huske på at det blir litt annerledes hvis vinklene er negative :)

Posted: 12/06-2008 17:20
by supernoob
Takk Mari og Mepe

Spesielt takk for den enkle forklaringen Mepe, fant ut at jeg hadde tengnet en eller to ting feil :roll:


Med andre ord, når det er snak om sin så går parallell vinkelen vanrett mens cos sin parallell vinkel går loddrett?




Enda en oppgave
[tex] 2cos[/tex][sup]2[/sup][tex]v+cosv=0[/tex]

Stemmer denne utregningen?

[tex] 2cos[/tex][sup]2[/sup][tex]v+cosv=0[/tex]
[tex](1[/tex][sup]2[/sup][tex]+1) /2 = 1[/tex]

Posted: 12/06-2008 23:49
by mepe
bare hyggelig at kunne hjelpe!
Du kan si at sin skjærer enhetssiklen vanrett og cos loddrett! - jeg liker selv best at tenke på at sin verdier avleses på y-aksen og cos verdier på x-aksen .. men smak og behag!!

Vedr
[tex]2Cos^2v+cosv =0[/tex]

så må du tenkte på det som en 2.gradslikning.. og løse dem for Cosv
du kan sette Cosv =u for at gjøre det mere overskueligt, så kommer den til at se ut som følger:

[tex]2U^2+ U =0[/tex]

løser den som en vanlig 2. grads likning, og får at
[tex]U= 0[/tex] v [tex]U= -1/2[/tex]

dvs. at [tex]Cosv = 0[/tex] v [tex]Cosv = [/tex][tex]-1/2[/tex]

så hvis v :[0,360>

og [tex]cosv =0[/tex]

er [tex]v= 90g[/tex] eller [tex]v = 270g[/tex]

eller hvis [tex]cosv= -1/2[/tex]

er [tex]v= 120g [/tex]eller [tex]v= 240g[/tex]

For at finne disse grader er det igjen vigtigt at tegne enhetssirklen!!