Page 1 of 2
En lett en.
Posted: 26/04-2008 17:29
by Knuta
Finn avstanden fra A til B
Alle linjestykker har lengde 1.
alle sekskantene er regulære, alle firkanter er kvadrater.
Konstruert med GeoGebra og god tid.
Posted: 26/04-2008 17:46
by espen180
vås, feil svar
Posted: 26/04-2008 17:54
by Knuta
Nei.
Posted: 26/04-2008 18:10
by espen180
Fillern, regnet ut feil vinkel og brukte radianer istedet for vinkler. Prøver igjen.
[tex]V_{6kant}=120[/tex]
Da er langsiden lik
[tex]L_L=4+3\sqrt{2-2\text{Cos}(120)}=9.19615[/tex]
Og kortsiden blir
[tex]L_K=3+2\sqrt{2-2\text{Cos}(120)}=6.46410[/tex]
Og dermed blir avstanden lik
[tex]L_{a\to b}=\sqrt{L_L^2+L_K^2}=11.24072191[/tex]
Der.
Posted: 26/04-2008 18:15
by Knuta
Cirkasvaret er riktig, klarer du det eksakte?
Posted: 26/04-2008 18:38
by groupie
Vil dette holde:
[tex]\sqrt{\frac{72\sqrt{3}+128}{2}}[/tex]
?
Beklager for å presse meg på. Regnet ut oppgaven med pytagoras..
Posted: 26/04-2008 18:58
by Knuta
Presset deg på? Bare koslige det
Svaret ditt er riktig. Jeg kom fram til [tex]\sqrt{\sqrt{3888}+64}[/tex]
Posted: 26/04-2008 19:06
by espen180
Hvordan kommer man fram til slike verdier?
Posted: 26/04-2008 19:13
by Knuta
[tex]cos(120) = -1/2[/tex]
[tex]\sqrt{2-2\cdot-1/2} = sqrt{3}[/tex]
Tips
Gjør alt om til inn under rottegnet før du bruker pytagoras.
Posted: 26/04-2008 23:43
by =)
eksakte verdier er alltid til å foretrekker i ikke praktiske oppgaver (synes nå jeg da).
Posted: 27/04-2008 00:15
by Thales
fant ut at jeg hadde feil svar. prøve på nytt

Posted: 27/04-2008 00:28
by groupie
espen180 wrote:
Og dermed blir avstanden lik
[tex]L_{a\to b}=\sqrt{L_L^2+L_K^2}=11.24072191[/tex]
Der.
Knuta wrote:
Cirkasvaret er riktig, klarer du det eksakte?
Knuta wrote:
[tex]\sqrt{\sqrt{3888}+64}[/tex]
Evt.
[tex]\sqrt{\frac{72\sqrt{3}+128}{2}}=\sqrt{36\sqrt{3}+64} [/tex]
Prøv igjen

Posted: 27/04-2008 06:11
by daofeishi
Oppfølger: Hver av kantene er en 1-ohms resistor. Hva er den ekvivalente resistansen mellom A og B?
Posted: 27/04-2008 11:27
by Thales
Jeg fant svaret til avstandedn AB:
[symbol:rot] (64+ 8[symbol:rot]27+6 [symbol:rot] 12) [symbol:identisk] 11.24072191
er ikke flink nok med bb-coder

, men svaret er riktig
Posted: 27/04-2008 13:37
by Knuta
daofeishi wrote:Oppfølger: Hver av kantene er en 1-ohms resistor. Hva er den ekvivalente resistansen mellom A og B?
Interessant spørsmål. Paralellkoblinger/serikoblinger er ikke noe problem.
Det er null problem å beregne kretsen nedenfor dersom R5 er 0 ohm eller hvis den er uendelig. Men hvordan beregnes ellers slike kretser? det må jeg vite før jeg gyver løs på problemet.
