Page 1 of 1
Eksponentialfunksjoner
Posted: 15/12-2007 15:31
by Wentworth
[tex]5000\cdot1,04^x[/tex]
Deriverer :
[tex](5000\cdot1,04^x)^\prime[/tex]=[tex]5000\cdot1,04^x\cdot ln1,04[/tex]
blir det...
Posted: 15/12-2007 15:40
by Janhaa
edit:
stemmer ikke (jeg var litt kjapp i avtrekker'n).
Posted: 15/12-2007 15:42
by Wentworth
har jeg ikke glemt å skrive [tex]ln[/tex] et sted ?
Posted: 15/12-2007 15:54
by Janhaa
scofield wrote:har jeg ikke glemt å skrive [tex]ln[/tex] et sted ?
jo for pokker scofield...du har rett, sorry:
den deriverte er slik:
[tex]5000\cdot 1,04^x \cdot \ln(1,04)[/tex]
Posted: 15/12-2007 15:58
by Wentworth
korrigert ....takk
Posted: 15/12-2007 16:00
by Wentworth
[tex]2^{2x+1}\cdot 2[/tex] er dette det samme som [tex]2^{2x+2}[/tex]
Posted: 15/12-2007 16:16
by Wentworth
[tex]2^{2x+1}[/tex]
Kjernen : [tex]u(x)=2x+1[/tex] og [tex]u^\prime(x)=2[/tex]
Deriverer:
[tex](2^{u(x)})^\prime=2^{u(x)} \cdot u^\prime(x)=2^{2x+1} \cdot 2=2^{2x+2}\cdot ln2[/tex]
Posted: 15/12-2007 16:21
by orjan_s
du må huske å derivere [tex]2^u[/tex] også..
Posted: 15/12-2007 16:25
by Wentworth
[tex]u(x)=2x+1[/tex]
[tex]2^{u}[/tex] er dermed [tex]2^{2x+1}[/tex]

Posted: 15/12-2007 16:40
by Wentworth
Ny oppgave:
[tex]20\cdot 7^{3x-1}[/tex]
[tex]u(x)=3x-1[/tex] og [tex]u^\prime(x)=3[/tex]
Deriverer:
[tex]20\cdot 7^{u(x)}\cdot u^\prime (x)=[/tex]
[tex]20\cdot 7^{3x-1}\cdot 3[/tex]
[tex]20\cdot 3 \cdot 7^{3x-1}\cdot ln7[/tex]
[tex]60 ln7 \cdot 7^{3x-1}[/tex]

Posted: 15/12-2007 16:41
by orjan_s
Vet ikke helt hva du spør etter, men:
[tex]2^{2x+1}\cdot 2=2^{2x+2}[/tex]
[tex](2^{2x+1})^,[/tex] er ikke lik [tex]2^{2x+2}[/tex]
Posted: 15/12-2007 16:43
by Wentworth
orjan_s skrev :"Vet ikke helt hva du spør etter, men":
[tex]2^{2x+1}\cdot 2=2^{2x+2}[/tex]
Dette

Posted: 15/12-2007 17:19
by =)
ser ut som du har misforstått litt scofield,
[tex](2^{2x+1})^, = 2^{2x+2}\ln2[/tex]
Posted: 16/12-2007 20:02
by Wentworth
=) wrote:ser ut som du har misforstått litt scofield,
[tex](2^{2x+1})^, = 2^{2x+2}\ln2[/tex]
Har ikke misforstått,nei.
Dette er helt rikitg!
Det forrige var bare analysering for visse talluttrykk på hvorfor eller hvordan 2x+1 i potens blir 2x+2 ,jo for du ganger 2x+1 med 2 og får 2x+2. Altså [tex](a^x)^\prime=a^x\cdot ln a{\rightarrow} (2^{2x+1})^, = 2^{2x+2}\ln2[/tex]
