Page 1 of 1
					
				logaritmer
				Posted: 10/12-2007 16:09
				by studmat
				Hvordan kan jeg omforme dette uttrykket:
lg(x[sup]4y[/sup]), kan bruke 1. log setning, men litt usikker på hvordan.
spørsmål 2:
lg(4x-5), kan man skrive det som lg4x -lg5?
Hvis ikke hvordan løser jeg 
lg(4x-5)+4=lg10
			 
			
					
				
				Posted: 10/12-2007 16:13
				by Vektormannen
				[tex]\lg (x^{4y}) = 4y \cdot \lg x[/tex]
Spørsmål 2:
[tex]\lg (4x-5)[/tex] kan ikke skrives som [tex]\lg 4x - \lg 5[/tex]. For å løse denne likningen kan jeg gi deg et hint. Hva er lg 10? Hva må du opphøye 10 i for å få 10?
			 
			
					
				
				Posted: 10/12-2007 16:20
				by daofeishi
				Prøv å forstå hvordan logaritmer oppfører seg, ikke lær dem som et sett med regler. Da kan du finne ut selv hvilke omskrivninger som stemmer og hvilke som ikke gjør det. 
Du kan finne ut om omskrivningen din er korrekt på denne måten. Anta at [tex]\lg(4x-5) = \lg(4x) - \lg(5)[/tex]
Opphøy 10 med begge sider:
[tex]10^{\lg(4x-5)} = 10^{\lg(4x) - \lg(5)} \\ 4x-5 = \frac{10^{\lg(4x)}}{10^{\lg{(5)}}} \\ 4x-5 = \frac{4x}{5}[/tex] 
Stemmer dette?
			 
			
					
				
				Posted: 10/12-2007 16:30
				by studmat
				Er med på den, men kommer da ingen vei, vet at log10=1, men står da med ligningen 
lg(4x-5)=-3 og hva gjør jeg da?
			 
			
					
				
				Posted: 10/12-2007 16:32
				by daofeishi
				Opphøy 10 med begge sider