Tar jomfruhinna mi innen trigonometrisk substitusjon og prøver meg
[tex]I=8\int\frac{\rm{d}x}{(4x^2+1)^2}[/tex]
[tex]u=2x,\,\ u^\prime=2,\,\ dx=\frac{\rm{d}u}2[/tex]
[tex]I=4\int\frac{\rm{d}u}{(u^2+1)^2}[/tex]
[tex]u=\tan(t)[/tex]
[tex]t=\arctan(u)[/tex]
[tex]\frac{\rm{d}u}{\rm{d}t}=1+\tan^2t,\,\ \rm{d}u=(1+tan^2t)\rm{\rm{d}}t[/tex]
[tex]I=4\int\frac{1+\tan^2t}{(\tan^2t+1)^2}\rm{d}t=4\int\frac{\rm{d}t}{1+\tan^2t}[/tex]
[tex]1+\tan^2t=\frac1{\cos^2t}[/tex]
[tex]I=4\int \cos^2t \rm{d}t[/tex]
Benytter meg av [tex]\cos^2t=\frac12(1+\cos(2t))[/tex]
[tex]I=2\int1+\cos(2t)\rm{d}t=2(t+\frac12\sin(2t))+C=2t+2\sin(t)\cos(t)+C[/tex]
[tex]I=2\arctan(u)+2\sin(\arctan(u))\cos(\arctan(u))+C[/tex]
[tex]\arctan(u)=\arccos(\frac1{\sqr{u^2+1}})=\arcsin(\frac{u}{\sqr{u^2+1}})[/tex]
[tex]I=2\arctan(2x)+2\cdot\frac{2x}{\sqr{4x^2+1}}\cdot\frac1{\sqr{4x^2+1}}+C[/tex]
Dermed:
[tex]I=2\arctan(2x)+\frac{4x}{4x^2+1}+C[/tex]
Liten morsom sak:
http://img264.imageshack.us/img264/4696 ... 007km6.jpg