Page 1 of 1

induksjon

Posted: 18/11-2007 01:44
by insei
jeg trenger litt hjelp med induksjon.. jeg har sett på endel induksjonsoppgaver med ulikheter, og induksjon med trigonometri og har skjønt litt av poenget. Men her stopper også forståelsen..

Vise ved induksjon at

[tex]\frac{1}{2n} \leq \frac{1 \cdot 3\cdot5 \cdot \cdot \cdot (2n-1)}{2 \cdot 4 \cdot 6\cdot \cdot \cdot(2n)} < \frac{1}{\sqrt{n+1}}[/tex]

for alle heltall [tex]n \geq 1[/tex].

Vi har her en påstand [tex]P_n:[/tex] [tex]\frac{1}{2n} \leq \frac{1 \cdot 3\cdot5 \cdot \cdot \cdot (2n-1)}{2 \cdot 4 \cdot 6\cdot \cdot \cdot(2n)} < \frac{1}{\sqrt{n+1}}[/tex]

Vi ønsker å se om dette stemmer for [tex]P_1[/tex]

[tex]P_1:[/tex] [tex]\frac{1}{2} \leq \frac{1}{2} < \frac{1}{\sqrt{2}}[/tex]

Som ser ut til å stemme.

Vi antar da at dette stemmer for [tex]P_k[/tex] , og bruker dette til å vise at det også stemmer for [tex]P_{k+1}[/tex]

[tex]P_k:[/tex] [tex]\frac{1}{2k} \leq \frac{1 \cdot 3\cdot5 \cdot \cdot \cdot (2k-1)}{2 \cdot 4 \cdot 6\cdot \cdot \cdot(2k)} < \frac{1}{\sqrt{k+1}}[/tex]

Som vi antar stemmer...


[tex]P_{k+1}:[/tex] [tex]\frac{1}{2(k+1)} \leq \frac{1 \cdot 3\cdot5 \cdot \cdot \cdot (2(k+1)-1)}{2 \cdot 4 \cdot 6\cdot \cdot \cdot(2(k+1)} < \frac{1}{\sqrt{(k+1)+1}}[/tex]

[tex]P_{k+1}:[/tex] [tex]\frac{1}{2k+2} \leq \frac{1 \cdot 3\cdot5 \cdot \cdot \cdot (2k+1)}{2 \cdot 4 \cdot 6\cdot \cdot \cdot(2k+2)} < \frac{1}{\sqrt{k+2}}[/tex]

Tilbake til

[tex]P_k:[/tex] [tex]\frac{1}{2k} \leq \frac{1 \cdot 3\cdot5 \cdot \cdot \cdot (2k-1)}{2 \cdot 4 \cdot 6\cdot \cdot \cdot(2k)} < \frac{1}{\sqrt{k+1}}[/tex]

Hvordan skal jeg klare å regne med et utrykk som:

[tex]\frac{1 \cdot 3\cdot5 \cdot \cdot \cdot (2k-1)}{2 \cdot 4 \cdot 6\cdot \cdot \cdot(2k)[/tex]

Er det meningen at jeg skal bruke en summeformel for:

[tex]1 \cdot 3\cdot5 \cdot \cdot \cdot (2k-1)[/tex] og [tex]2 \cdot 4 \cdot 6\cdot \cdot \cdot(2k)[/tex]

Eller bare rett å slett regne med de ytterste produktene som feks:

[tex]\frac{1 \cdot 3\cdot5 \cdot \cdot \cdot (2k-1)}{2 \cdot 4 \cdot 6\cdot \cdot \cdot(2k)} \cdot \frac{1}{2k-1} = \frac{1 \cdot 3\cdot5 \cdot \cdot \cdot (2(k-1)-1)}{2 \cdot 4 \cdot 6\cdot \cdot \cdot(2k)} = \frac{1 \cdot 3\cdot5 \cdot \cdot \cdot (2k-3)}{2 \cdot 4 \cdot 6\cdot \cdot \cdot(2k)}[/tex]

Posted: 18/11-2007 19:14
by fish
Du tar altså utgangspunkt i induksjonsantakelsen:

[tex]\frac{1}{2k}\leq \frac{1\cdot 3\cdots (2k-1)}{2\cdot 4 \cdots 2k}\leq \frac{1}{\sqrt{1+k}}[/tex]

Multipliser den dobbelte ulikheten med brøken [tex]\frac{2k+1}{2k+2}[/tex]:

[tex]\frac{1}{2k}\cdot \frac{2k+1}{2k+2}\leq \frac{1\cdot 3\cdots (2k+1)}{2\cdot 4 \cdots (2k+2)}\leq \frac{1}{\sqrt{1+k}}\cdot\frac{2k+1}{2k+2}[/tex]

Forsøk å komme deg videre herfra. Du får blant annet bruk for [tex]\frac{2k+1}{2k}>1[/tex]