Page 1 of 2
Vektorregning - finne koordinater
Posted: 11/11-2007 20:35
by flodhest
I trekant ABC har hjørnene koordinatene A(-1, 3), B(2, -3) og C(5, 1)
Finn koordinatene til et punkt D på linjen AB som er slik at CD står vinkelrett på AB.
Posted: 11/11-2007 20:38
by mrcreosote
Finn ut hvordan du kan skrive et vilkårlig punkt på linja AB, altså en parametrisering av den.
Hva er det første du tenker når du hører vinkelrett og vektor?
Posted: 11/11-2007 20:54
by flodhest
mrcreosote wrote:Finn ut hvordan du kan skrive et vilkårlig punkt på linja AB, altså en parametrisering av den.
Er ikke helt sikker, men (x, y)?
mrcreosote wrote:Hva er det første du tenker når du hører vinkelrett og vektor?
[tex]\vec{AB} \cdot \vec{CD} = 0[/tex]
Posted: 11/11-2007 21:04
by Vektormannen
Stemmer det, når en vektor står vinkelrett på en annen, er produktet av de to lik 0. Hvordan kan du uttrykke [tex]\vec {CD}[/tex]?
Posted: 11/11-2007 21:07
by flodhest
[x-5, y-1] ?
Posted: 11/11-2007 21:08
by mrcreosote
Prikkproduktet av 2 vektorer som står normalt på hverandre er 0, bra!
Det var en litt slitsom måte jeg antyda først, glem den. Vektoren AB vedder jeg på du greier å finne. Da må du bare finne CD. Men denne kan skrives CD=CA+AD. CA finner du også lett. Nå gjenstår bare å finne AD. Vi veit at punktet D ligger på linja AB, så AD og AB må ha parallelle retningsvektorer. Gruble litt på dette nå, og spør heller igjen.
Posted: 11/11-2007 21:12
by Vektormannen
flodhest wrote:[x-5, y-1] ?
Nei, tenk heller slik som mrcreosote forklarer. [tex]\vec {CD} = \vec {CA} + \vec {AD}[/tex]. Hvordan kan du uttrykke [tex]\vec {AD}[/tex]?
Posted: 11/11-2007 21:55
by flodhest
[tex]\vec {AB}[/tex] og [tex]\vec{CA[/tex] klarer jeg å finne, men jeg finner fortsatt ikke [tex]\vec{AD[/tex]
Posted: 11/11-2007 21:57
by Vektormannen
Tips: [tex]\vec {AD}[/tex] er parallell med [tex]\vec {AB}[/tex]. Når to vektorer er parallelle, hva vil det egentlig si?
Posted: 11/11-2007 22:21
by flodhest
Et tall ganget med [tex]\vec{AB}[/tex] = [tex]\vec{AD}[/tex]
Posted: 11/11-2007 22:27
by Vektormannen
Akkurat. Hvordan blir da [tex]\vec {CD}[/tex] uttrykt som [tex]\vec {CA} + \vec {AD}[/tex]?
Posted: 11/11-2007 22:46
by flodhest
Vektormannen wrote:Akkurat. Hvordan blir da [tex]\vec {CD}[/tex] uttrykt som [tex]\vec {CA} + \vec {AD}[/tex]?
[tex]\vec {CD}[/tex]= [-1-5, 3-1] + t[3, -6]
= [-6, 2] + [3t, -6t]
Skal jeg videre sette y'ene lik hverandre og x'ene lik hverandre, og regne ut?
Posted: 11/11-2007 22:52
by Vektormannen
Hvilke x'er og y'er? Du kan forresten trekke sammen [tex]\vec {CD}[/tex] enda litt til:
[tex]\vec {CD} = [-6,2] + [3t, -6t] = [3t-6, -6t-2][/tex]
Husk hva oppgaven er -- [tex]\vec {CD}[/tex] skal være vinkelrett på [tex]\vec {AB}[/tex]. Altså skal [tex]\vec {AB} \cdot \vec {CD} = 0[/tex]! Klarer du nå å komme frem til en verdi for t?
EDIT: Rettet DC til CD ...
Posted: 11/11-2007 23:21
by flodhest
[tex]\vec {CD} [/tex] = [-6,2] + [3t, -6t] = [3t-6, -6t-2]
3t-6 = 3
3t = 9
t = 3
-6t-2 = -6
-6t = -4
t = [tex]\frac{4}{6}[/tex]
Posted: 11/11-2007 23:31
by Vektormannen
Her får du jo to forskjellige verdier av t. Hva er det egentlig du gjør? Setter x- og y-komponentene i AB lik de i CD?
Som sagt helt øverst her skal produktet av [tex]\vec {CD}[/tex] og [tex]\vec {AB}[/tex] være 0:
[tex]\vec {AB} \cdot \vec {CD} = 0[/tex]
[tex][3,-6] \cdot [3t-6, -6t+2] = 0[/tex]
[tex]3(3t-6) + -6(-6t+2) = 0[/tex]
[tex]9t - 18 + 36 - 12 = 0[/tex]
[tex]45t = 30[/tex]
[tex]t = \frac 2 3[/tex]
Nå har vi funnet hvilken skalar [tex]\vec {AB}[/tex] må ganges med for få [tex]\vec {AD}[/tex]. Da er det bare å gange denne skalaren inn i [tex]\vec {CD}[/tex]. Det siste du da må gjøre er å finne posisjonsvektoren til punktet D, uttrykt med vektorene du nå har funnet. Det bør være rimelig enkelt.