Page 1 of 1
inverse funksjoner, og integraler
Posted: 13/10-2007 16:31
by marxin
trenger litt hjelp til noen oppgaver:
1. hva er den inverse funksjonen til: f(x) = x [sup]3[/sup]+ 2x + 1
2. hvordan integrere: F(x) = [symbol:integral] e[sup]t2[/sup] dt
OBS! det er e, t i [sup]2[/sup]
trenger virkelig litt hjelp, har arbeidet med helt fast
Posted: 13/10-2007 17:10
by daofeishi
1. Funksjonen er bijektiv og har en invers, men den inverse funksjonen ser ikke fin ut - ved hjelp av Mathematica fant jeg:
[tex]f^{-1}(x) = -\frac{2 \left(\frac{2}{3}\right)^{1/3}}{\left(-9+9 x+\sqrt{3} \sqrt{59-54 x+27 x^2}\right)^{1/3}}+\frac{\left(-9+9 x+\sqrt{3} \sqrt{59-54 x+27 x^2}\right)^{1/3}}{2^{1/3} 3^{2/3}}[/tex]
Å finne denne for hånd er ingen morsom oppgave.
2. Dette kalles det Gaussiske integralet, og gir ikke etter for elementære teknikker - du kan lese mer her:
http://mathworld.wolfram.com/GaussianIntegral.html
Posted: 13/10-2007 18:38
by marxin
takk for svar
Lurer også på hva som er sammenhengen mellom f(x), og den inverse funksjon f[sup]-1[/sup] derivert?
Kan vi f.eks enkelt finne f[sup]-1[/sup] derivert ved hjelp av f(x)?
Slik at vi ikke trenger å finne den inverse funksjonen, bare den inverse funksjonen derivert.
F.eks
Vi skal finne den deriverte av f[sup]-1[/sup](1) av oppgave 1.
---------------------------------------------------------------------------------
Kan vi finne svar på:
oppgave 2, med bestemte grenser?
fra 0 til 3x.
Posted: 13/10-2007 19:34
by =)
hvis ikke jeg tar helt feil så er
[tex]f^{-1}^, = \frac{1}{f^,(f^{-1})}[/tex]
og integralet
[tex]\int e^{x^2} \;dx[/tex]
Har (så vidt jeg vet) ingen løsning med endelige grenser, men jeg kan hinte at:
[tex]e^{x^2} = \sum_{k=0}^\infty \frac{x^{2k}}{k!}[/tex]