buelengde
Posted: 07/10-2007 23:04
Find the length of one arc of the cycloid [tex]x=a(\theta-sin\theta)[/tex] ,
[tex]y=a(1-cos\theta)[/tex], [tex]0 < \theta < 2\pi[/tex]
[tex]L= \int_0^{2\pi} \sqrt{(\frac{dy}{d\theta})^2 +(\frac{dx}{d \theta})^2} d\theta [/tex]
[tex]L= \int_0^{2\pi} \sqrt{(a((sin\theta))^2 +(a(1-cos\theta))^2} d\theta [/tex]
[tex]L=a \int_0^{2\pi} \sqrt{sin^2 \theta +1-2cos\theta +cos^2 \theta} d\theta [/tex]
[tex]L=a\sqrt{2} \int_0^{2\pi} \sqrt{1-cos \theta} d\theta [/tex]
ganger med [tex]\frac{\sqrt{1+cos \theta}}{\sqrt{1+cos \theta}}[/tex]
og integrerer så får jeg:
[tex]L = 2a[\sqrt{2-2cos \theta}]_0^{2\pi}[/tex] og dette blir jo 0.. det blir feil.
[tex]y=a(1-cos\theta)[/tex], [tex]0 < \theta < 2\pi[/tex]
[tex]L= \int_0^{2\pi} \sqrt{(\frac{dy}{d\theta})^2 +(\frac{dx}{d \theta})^2} d\theta [/tex]
[tex]L= \int_0^{2\pi} \sqrt{(a((sin\theta))^2 +(a(1-cos\theta))^2} d\theta [/tex]
[tex]L=a \int_0^{2\pi} \sqrt{sin^2 \theta +1-2cos\theta +cos^2 \theta} d\theta [/tex]
[tex]L=a\sqrt{2} \int_0^{2\pi} \sqrt{1-cos \theta} d\theta [/tex]
ganger med [tex]\frac{\sqrt{1+cos \theta}}{\sqrt{1+cos \theta}}[/tex]
og integrerer så får jeg:
[tex]L = 2a[\sqrt{2-2cos \theta}]_0^{2\pi}[/tex] og dette blir jo 0.. det blir feil.