Page 1 of 1
Implisitt derivasjon
Posted: 23/09-2007 11:58
by hello
Hei,
Oppgaven: x-y+3xy=2
Finn dy/dx ved implisitt derivasjon
Hva gjør jeg når jeg har to y-er?
Jeg prøvde å løse oppgaven og fikk
1-dy/dx+3y+3xdy/dx=0
Her blir jo dy/dx-dy/dx=0 og det går jo ikke ann?

Posted: 23/09-2007 12:31
by daofeishi
Det stemmer slik du har gjort det.
[tex]1 - \frac{\rm{d}y}{\rm{d}x} + (3y + 3x\frac{\rm{d}y}{\rm{d}x}) = 0[/tex]
Og løser du dette med hensyn på dy/dx får du:
[tex]\frac{\rm{d}y}{\rm{d}x} = \frac{3y+1}{1-3x}[/tex]
Posted: 23/09-2007 12:39
by hello
daofeishi wrote:Det stemmer slik du har gjort det.
[tex]1 - \frac{\rm{d}y}{\rm{d}x} + (3y + 3x\frac{\rm{d}y}{\rm{d}x}) = 0[/tex]
Og løser du dette med hensyn på dy/dx får du:
[tex]\frac{\rm{d}y}{\rm{d}x} = \frac{3y+1}{1-3x}[/tex]
Kan du vise fullstendig utregning? Jeg skjønner fremdeles ikke hvordan en behandler to d/dx i et slikt uttrykk
Posted: 23/09-2007 12:43
by daofeishi
Du behandler dy/dx som en hvilkensomhelst bundet variabel.
[tex]1 - \frac{\rm{d}y}{\rm{d}x} + 3y + 3x\frac{\rm{d}y}{\rm{d}x} = 0\\ (-1+3x)\frac{\rm{d}y}{\rm{d}x} = -3y - 1[/tex]
og derfra følger resultatet
Posted: 23/09-2007 15:13
by Olorin