Page 1 of 2
					
				Hvordan finne integralet av en binomisk koeffesinet
				Posted: 17/08-2007 21:17
				by dajastacko
				...
			 
			
					
				
				Posted: 18/08-2007 00:07
				by Charlatan
				Jeg kan iallefall si at [tex]f^n(x)\not = f^y(x) \forall n \in \mathbb{N}[/tex] ( hvor n er den n-te deriverte av f(x) ) på grunn av cosinus-leddet. Cosinus leddets deriverte vil gå igjen i en uendelig syklus. Cosinus' deriverte er negativ sinus, og negativ sinus' deriverte er minus cosinus og minus cosinus' deriverte er sinus, og sinus deriverte er cosinus, og vi har en evig sirkel som aldri vil ende på noe punkt som vil kansellere leddet. De andre leddene vil forøvrig forsvinne etter henholdsvis èn og to derivasjoner.
(Selv om jeg ikke helt skjønner hva du mener med dette: "3X ln + 53")
Og formuleringen din er også en smule forvirrende: "Ved å derivere uendelig antall ganger, vil vi da stå igjen med uttrykket..."
Det skulle kanskje heller ha stått, ved å derivere n antall ganger (hvor n kan være hvilket som helst positivt heltall)
∫ (nC92) dx 
Men hva betyr dette?
Dette er en veldig merkelig oppgave:
cos[sup]x [/sup] (2x-7) = ln x - 44
Kan si at svaret er [tex]x \approx  e^{44}[/tex]
Vi omformer likningen:
ln x - cos[sup]x [/sup] (2x-7) = 44
Siden cosinus uttykket alltid vil være mellom -1, og 1, kan vi si at [tex]ln x \approx  44[/tex]
Hvorfor:
For å oppfylle denne likningen for et tall nær 44 med en margin på [tex]\pm 1[/tex] Da ser vi at x må være veldig stor, dette gjør at cosinus som må være mellom (eller lik) -1 og 1, enten vil bli tilnærmet lik null, 1 eller -1. 
Av logikk ser vi at det er umulig for at [tex]2e^{44} - 7[/tex] skal være lik til noen av verdiene i den uendelige følgen: 0, [symbol:pi] ,2 [symbol:pi] ,3 [symbol:pi] ... ,n [symbol:pi] Fordi det er ingen sammenheng mellom e og pi (utenom imaginære tall)
Som nødvendigvis gjør cosinus uttrykket mellom 1 og -1. Dette gjør at når vi opphøyer uttrykket såpass høyt som [tex]x \approx  e^{44}[/tex] kan vi forvente at det tilnærmer seg null. Dermed står vi igjen med dette uttrykket:
[tex]ln x \approx  44[/tex]
[tex]x \approx  e^{44}[/tex]
			 
			
					
				
				Posted: 18/08-2007 00:20
				by Magnus
				Redigert.
			 
			
					
				Re: Hvordan finne integralet av en binomatisk sannsynlighet?
				Posted: 18/08-2007 01:03
				by Janhaa
				dajastacko wrote:Jeg har problemet med å løse følgende formel og trenger hjelp....3
 [symbol:integral]  (nC92) dx?
...
Virker som tull og tøys. Binomatisk? Hva er det?  
 
 
Spør du for å spørre? Kanskje du er hypp på oppmerksomhet...
 
			
					
				Beklager for missforståelsen....
				Posted: 18/08-2007 13:08
				by dajastacko
				...
			 
			
					
				
				Posted: 18/08-2007 13:27
				by dajastacko
				...
			 
			
					
				
				Posted: 18/08-2007 13:37
				by Charlatan
				Forresten, på oppgaven: 
[tex]ln x - cos^x (2x-7) = 44 [/tex]
Så vil svaret være imaginært hvis den [tex]cos(2e^{44}-7)[/tex] er negativt. Jeg kan ikke behandle så store tall med en nøyaktighet på  [symbol:pi]  på kalkulatoren, men likningen har bare relle løsninger så lenge [tex]\cos{(2e^{44}-7)} > 0[/tex] eller lik 0.
			 
			
					
				
				Posted: 18/08-2007 13:46
				by dajastacko
				...
			 
			
					
				
				Posted: 18/08-2007 14:18
				by Sonki
				Var det ikke heller det at ingen kunne finne ham da? Jeg husker ikke det helt, men det var det jeg trodde  

 
			
					
				
				Posted: 18/08-2007 14:46
				by Charlatan
				Dette er mannen som løste "Poincarè Conjecture" (Grigori Perelman):
http://en.wikipedia.org/wiki/Grigori_Perelman
http://worldses.org/perelman/1.jpg
Han vant 1 000 000 dollar ja, men han valgte å ikke ta dem imot.
Om grunnen er for at han ikke vil ha en overflod av mat er ikke så veldig sannsynlig den eneste i så fall 
 
mange fattige studenter gjør det veldig bra på skolen. 
Dette er jeg imidlertidig ikke enig i. Fattige studenter har ofte lite tid til skole, og dermed gjør det dårligere. Men det motsier ikke at sult gjør en smartere.
 
			
					
				
				Posted: 18/08-2007 15:09
				by dajastacko
				...
			 
			
					
				
				Posted: 18/08-2007 15:14
				by Charlatan
				Det må jo nesten ligge noe i det. Men sult kan samtidig distrahere deg sier nå jeg.
			 
			
					
				
				Posted: 18/08-2007 15:20
				by dajastacko
				...
			 
			
					
				
				Posted: 18/08-2007 23:29
				by dajastacko
				...
			 
			
					
				
				Posted: 18/08-2007 23:31
				by Charlatan
				Den der har iallefall ingen løsning (triviell iallefall) så vidt jeg vet.