Page 1 of 1

Integrasjon

Posted: 27/05-2007 20:39
by STCAB
Nå har jeg fått nok. Hjelp! :D
Kan noen løse denne og vise utregning?

3/ (2[symbol:rot] (3x+1))
I området 1-5.

Forresten, er det det samme som
1,5/ [symbol:rot] (3x+1)
?

Kalkulator sier 2. Men aldri om jeg får det ved utregning.

Posted: 27/05-2007 20:48
by josk17
Ja, de to uttrykkene er det samme. Jeg løser integralet ubestemt, så kan du stappe in grensene selv (jeg fikk 2). Integralet løses greit med substitusjonen

[tex]u=3x+1[/tex]

Da blir [tex]u\prime=3[/tex], vi bytter dette inn i integralet og får:

[tex]\int\frac{3}{2\cdot\sqrt{3x+1}}{\rm d}x[/tex]
[tex]=\frac{1}{2}\int\frac{1}{u}\frac{{\rm d}u}{{\rm d}x}dx[/tex]
[tex]=\frac{1}{2}\int u^{-\frac{1}{2}}{\rm d}u[/tex]
[tex]=\sqrt{u}+c=sqrt{3x+1}+c[/tex]

Re: Integrasjon

Posted: 27/05-2007 20:53
by ettam
STCAB wrote:Nå har jeg fått nok. Hjelp! :D
Kan noen løse denne og vise utregning?

3/ (2[symbol:rot] (3x+1))
I området 1-5.


Kalkulator sier 2. Men aldri om jeg får det ved utregning.

Du mener vel:

[tex]\int_1^5 \frac{3}{2\sqrt{3x+1}} dx = \[\sqrt{3x+1}\]_1^5 = 2[/tex]

Posted: 27/05-2007 21:13
by STCAB
Stemmer det.

EDIT: Ah endelig, nå fant jeg feilen. Takker! :D

Posted: 28/05-2007 17:19
by STCAB
Er det mulig? Jeg får feil enda. Det er noe annet jeg gjør galt i tillegg.

Posted: 28/05-2007 21:25
by josk17
Tar utgangspunkt i det ferdige integralet.

[tex][\sqrt{3x+1}]_1^5=\sqrt{3\cdot5+1}-\sqrt{3\cdot1+1}=\sqrt{16}-\sqrt{4}=4-2\underline{\underline{=2}}[/tex]

Posted: 28/05-2007 22:29
by STCAB
Det er å komme fram til det ferdige integralet som er problemet.

Posted: 28/05-2007 22:32
by josk17
Da foreslår jeg at du ser på mitt første innlegg i tråden og prøver å forklare hva det er du ikke forstår.