Page 1 of 1
					
				Volumberegninger 3MX
				Posted: 10/01-2007 12:38
				by Xvid lol
				Hei, trenger litt hjelp med denne oppgaven
Gå ut ifra at jordkloden er en perfekt kule som har en radius på 6,4 * 10^6 m.
a) Oslo ligger på 60 grader nordlig bredde. Vi skjærer et plan parallelt med ekvator langs denne breddegraden. Hvor langt vil det være fra sentrum av kloden til planet?
b) Regn ut volumet av den delen av kloden som ligger nord for Oslo.[/code]
			 
			
					
				Re: Volumberegninger 3MX
				Posted: 10/01-2007 13:09
				by Janhaa
				Xvid lol wrote:Hei, trenger litt hjelp med denne oppgaven
Gå ut ifra at jordkloden er en perfekt kule som har en radius på 6,4 * 10^6 m.
a) Oslo ligger på 60 grader nordlig bredde. Vi skjærer et plan parallelt med ekvator langs denne breddegraden. Hvor langt vil det være fra sentrum av kloden til planet?
b) Regn ut volumet av den delen av kloden som ligger nord for Oslo.[/code]
http://www.diskusjon.no/index.php?showt ... 88&st=1640
se på den linken over, let litt der og du finner ang kulesegment. Tror
du kan bruke noen av formlene
 
			 
			
					
				Re: Volumberegninger 3MX
				Posted: 10/01-2007 16:07
				by ettam
				Jeg plasserer jordkoden i koordinatsystemet slik at den  positive x-aksen passerer gjennom den geografiske nordpolen, sentrum i jorda er plassert i origo.
a) Avstanden fra sentrum av kloden til planet blir da:
[tex]r_j \cdot sin \alpha = 6,4 \cdot 10^6 m \cdot sin 60 \textdegree = \underline{\underline{5,54 \cdot 10^6 m}}[/tex]
b) 
Det volumet som oppgaven spør etter er det omdreiningslegmeet som dannes av flatestykket avgrenset av x-aksen, linja y = [tex]5,54 \cdot 10^6 m [/tex] og grafen til funksjonen f:
[tex]f(x) = \sqrt{r^2 - x^2} = \sqrt{(6,4 \cdot 10^6 m)^2 - x^2}[/tex]
[tex]V = \pi \int_{5,54 \cdot 10^6 m}^{6,4 \cdot 10^6 m} (\sqrt{(6,4 \cdot 10^6 m)^2 - x^2})^2 dx = \underline{\underline{1,4 \cdot 10^{19} m^3 }}[/tex]
			 
			
					
				
				Posted: 11/01-2007 13:43
				by Xvid lol
				Takk for hjelpen