Page 1 of 1

Derivasjon

Posted: 14/12-2006 18:41
by Bjarne:)
f'(x)x^2/(x^2+1) = 2x/(x^2+1)^2 Hvordan regner jeg ut f''(x)? Svaret skal bli 2-6x^2/(x^2+1)^3 men jeg får det bare ikke til å stemme!

Re: Derivasjon

Posted: 14/12-2006 19:14
by Janhaa
Bjarne:) wrote:f'(x)x^2/(x^2+1) = 2x/(x^2+1)^2 Hvordan regner jeg ut f''(x)? Svaret skal bli 2-6x^2/(x^2+1)^3 men jeg får det bare ikke til å stemme!

er [tex]\;f={x^2\over x^2+1}\;[/tex]?

hvis ja, er den deriverte:

[tex]f^,={2x\over (x^2+1)^2}[/tex]

Posted: 14/12-2006 21:12
by Bjarne:)
Ja, det kom jo jeg også frem til. Problemet er at den deriverte skal dobbelderiveres. Det er der jeg står fast..

Posted: 14/12-2006 21:23
by sEirik
Da må du bruke brøkregelen.

[tex]f^\prime (x) = \frac{2x}{(x^2 + 1)^2}[/tex]

[tex]f^\prime(x) = \frac{u}{v}[/tex]

[tex]u = 2x,\quad v = (x^2 + 1)^2[/tex]

Bruker kjerneregelen med kjerne [tex]q = (x^2 + 1)[/tex] for å finne [tex]v^\prime[/tex]

[tex]u^\prime = 2,\quad v^\prime = 4x(x^2 + 1)[/tex]

[tex]f^{\prime \prime} (x) = \frac{u^\prime v - uv^\prime}{v^2} = \frac{}[/tex]

Så er det bare å sette inn.

[tex]f^{\prime \prime} (x) = \frac{2 \cdot (x^2 + 1)^2 - 2x \cdot 4x(x^2+1)}{(x^2 + 1)^4}[/tex]

Oppryddingen klarer du vel selv.