Re: Tallteorimaraton
Posted: 06/06-2025 01:27
Først viser vi konstruksjon for uendelig mange gode tall.
$\textbf{Påstand:}$ Alle primtall $p\equiv 3\pmod 4$ er gode.
$\textit{Bevis:}$ $-1$ er ikke en kvadratisk rest. Det følger at nøyaktig én av $a$ og $p-a$ er en kvadratisk rest og at de har ulik paritet. La $b_i\equiv -a_i \pmod p$ Vi kan dermed ordne summen slik: $a_1 + b_1+a_2+b_2\dots a_{k-1}+b_{k-1}+p+a_k+b_k+\dots$, der $a_i$ er odde for $i < k$ og partall $i\geq k$. Dette tilfredsstiller kravene i oppgaven fordi summen veksler mellom $0$ og en kvadratisk rest samtidig som pariteten skifter.
Videre viser vi at det eksisterer en uendelig familie med tall som ikke er gode.
$\textbf{Påstand:}$ Ingen tall på formen $2^m$ er gode for $m\geq 2$.
$\textit{Bevis:}$ Legg merke til at kvadratiske rester modulo 4 er 0 og 1. På et tidspunkt i summen, så må det legges til et tall kongruent med 2 modulo 4. Summen er da kongruent med 2 eller 3 modulo 4. Ingen av disse kan være kvadratiske rester. Dermed er ikke $2^m$ et godt tall.
$\square$
$\textbf{Påstand:}$ Alle primtall $p\equiv 3\pmod 4$ er gode.
$\textit{Bevis:}$ $-1$ er ikke en kvadratisk rest. Det følger at nøyaktig én av $a$ og $p-a$ er en kvadratisk rest og at de har ulik paritet. La $b_i\equiv -a_i \pmod p$ Vi kan dermed ordne summen slik: $a_1 + b_1+a_2+b_2\dots a_{k-1}+b_{k-1}+p+a_k+b_k+\dots$, der $a_i$ er odde for $i < k$ og partall $i\geq k$. Dette tilfredsstiller kravene i oppgaven fordi summen veksler mellom $0$ og en kvadratisk rest samtidig som pariteten skifter.
Videre viser vi at det eksisterer en uendelig familie med tall som ikke er gode.
$\textbf{Påstand:}$ Ingen tall på formen $2^m$ er gode for $m\geq 2$.
$\textit{Bevis:}$ Legg merke til at kvadratiske rester modulo 4 er 0 og 1. På et tidspunkt i summen, så må det legges til et tall kongruent med 2 modulo 4. Summen er da kongruent med 2 eller 3 modulo 4. Ingen av disse kan være kvadratiske rester. Dermed er ikke $2^m$ et godt tall.
$\square$