Forslag til flere videoer:
- inverse trig.funksjoner, $\arcsin x$, $\sin^{-1} x$,
- logaritmer, $\log x$, $\log_3 x$, $\ln x$,
- vanlige tallmengder, $\mathbb{R}$, $\mathbb{N}$, $\mathbb{C}$, $\mathbb{Q}$,
Code: Select all
$\mathbb{R}$, $\mathbb{N}$, $\mathbb{C}$, $\mathbb{Q}$
- mengder, $\{p_1, p_2\}$ og $\mathbb{N}\setminus \{5\}$,
Code: Select all
$\{p_1, p_2\}$ og $\mathbb{N}\setminus \{5\}$
- vektorer, $\vec{r}=\langle 1,2\rangle$,
- integraler, $\int_a^b$, $\iint$, $\iiint$, $\oint_L$,
Code: Select all
$\int_a^b$, $\iint$, $\iiint$, $\oint_L$
- sum og produkt, $\sum_{n=1}^\infty \frac{1}{n^2}$, $\prod_i a_i$,
Code: Select all
$\sum_{n=1}^\infty \frac{1}{n^2}$, $\prod_i a_i$
- matriser, $\pmatrix{1 & 2 \\ 3 & 4}$,
- determinant, $\det A$,
- caser
$f(x) = \left\{\begin{array}{lr}
0, & \text{for } x<0\\
x^2, & \text{for } 0\leq x<1\\
1, & \text{for } 1\leq x
\end{array}\right\} $,
Code: Select all
$f(x) = \left\{\begin{array}{lr}
0, & \text{for } x<0\\
x^2, & \text{for } 0\leq x<1\\
1, & \text{for } 1\leq x
\end{array}\right\} $
- utstrykninger, $\frac{\cancel{2}\cdot 3}{\cancel{2}\cdot 5}$,
Code: Select all
$\frac{\cancel{2}\cdot 3}{\cancel{2}\cdot 5}$
- ulike typer piler, $\Leftarrow$, $\Leftrightarrow$, $\longleftarrow$,
Code: Select all
$\Leftarrow$, $\Leftrightarrow$, $\longleftarrow$
- funksjonsdefinsjon, $f:A\to B$,
- funksjonskomposisjon, $f\circ g $,
- mellomrom, $x\quad y$ , $x\qquad y$,
- over- og undertekst, $\mathcal{A}\overset{x\to\infty} {\longrightarrow}\underset{c}{\mathcal{B}}$
,
Code: Select all
$\mathcal{A}\overset{x\to\infty} {\longrightarrow}\underset{c}{\mathcal{B}}$
- kvantorer, $\exists$, $\not \exists $, $\forall$, $\in$, $\not \in$,
Code: Select all
$\exists$, $\not \exists $, $\forall$, $\in$, $\not \in$
- komplekskonjugert, $\overline{z}$,
- vinkler, $\angle ABC$, $\sphericalangle ABC$, $\measuredangle ABC$, $90^\circ$,
Code: Select all
$\angle ABC$, $\sphericalangle ABC$, $\measuredangle ABC$, $90^\circ$
- normale og parallelle linjer, $A\perp B$, $A\parallel B$,
- union og snitt, $\cup$, $\cap$,