Posted: 31/07-2008 19:37
Her begynner avsnittet om derivasjon av trigonometriske funksjoner
[tex]f(x)= 3\sin(x) \\ \, \\ f\prime(x) = 3 \cdot (\sin(x))\prime \\ \, \\ f\prime(x) = 3\cos(x)[/tex]
b)
[tex]u = 3x\;\; u\prime = 3[/tex]
[tex]f(x)=-\cos(3x) \\ \, \\ f\prime(x) = (-1) \cdot \left(\cos(u)\right)\prime \cdot u\prime \\ \, \\ f\prime(x) = (-1)\cdot (-\sin(u))\cdot u \\ \, \\ f\prime(x) = u\sin(u) \\ \, \\ f\prime(x) = 3\sin(3x)[/tex]
c)
[tex]f(x) = 2\cos(\pi x)-\sin(\frac x4)[/tex]
[tex]u = \pi x \;\;\; u\prime = \pi \\ \, \\ v = \frac x4 \;\;\; v\prime = \frac {1}{4}[/tex]
[tex]2\cdot (\cos(u))\prime \cdot u\prime - (\sin(v))\prime \cdot v\prime \\ \, \\ 2\cdot -\sin(u)\cdot u\prime - \cos(v)\cdot v\prime[/tex]
[tex]f(x) = -2\pi\sin(\pi x) - \frac 14 \cos\left(\frac x4\right)[/tex]
d)
[tex]f(x) = 4\sin^3(2x)[/tex]
[tex]u = \sin(2x) \;\; u\prime \cos(2x) \\ \, \\ w=2x \;\; w\prime = 2[/tex]
[tex]f\prime(x) = 4 \cdot (u^3)\prime \cdot u\prime \cdot w\prime \\ \, \\ f\prime(x) = 4 \cdot 3u^2 \cdot \cos(w) \cdot 2 \\ \, \\ f\prime(x) = 24\cdot \sin^2(2x)\cdot \cos(2x)[/tex]
edit: rettet en leif.
a)Oppgave 6.35 wrote:Finn f'(x) når:
[tex]f(x)= 3\sin(x) \\ \, \\ f\prime(x) = 3 \cdot (\sin(x))\prime \\ \, \\ f\prime(x) = 3\cos(x)[/tex]
b)
[tex]u = 3x\;\; u\prime = 3[/tex]
[tex]f(x)=-\cos(3x) \\ \, \\ f\prime(x) = (-1) \cdot \left(\cos(u)\right)\prime \cdot u\prime \\ \, \\ f\prime(x) = (-1)\cdot (-\sin(u))\cdot u \\ \, \\ f\prime(x) = u\sin(u) \\ \, \\ f\prime(x) = 3\sin(3x)[/tex]
c)
[tex]f(x) = 2\cos(\pi x)-\sin(\frac x4)[/tex]
[tex]u = \pi x \;\;\; u\prime = \pi \\ \, \\ v = \frac x4 \;\;\; v\prime = \frac {1}{4}[/tex]
[tex]2\cdot (\cos(u))\prime \cdot u\prime - (\sin(v))\prime \cdot v\prime \\ \, \\ 2\cdot -\sin(u)\cdot u\prime - \cos(v)\cdot v\prime[/tex]
[tex]f(x) = -2\pi\sin(\pi x) - \frac 14 \cos\left(\frac x4\right)[/tex]
d)
[tex]f(x) = 4\sin^3(2x)[/tex]
[tex]u = \sin(2x) \;\; u\prime \cos(2x) \\ \, \\ w=2x \;\; w\prime = 2[/tex]
[tex]f\prime(x) = 4 \cdot (u^3)\prime \cdot u\prime \cdot w\prime \\ \, \\ f\prime(x) = 4 \cdot 3u^2 \cdot \cos(w) \cdot 2 \\ \, \\ f\prime(x) = 24\cdot \sin^2(2x)\cdot \cos(2x)[/tex]
edit: rettet en leif.