Page 2 of 14
Re: R2 - Eksamen 22.mai. Megatråd!
Posted: 20/05-2017 20:26
by TFZ
Hei igjen! Noen som kan forklare fremgangsmåten for å finne konvergensområdet for en uendelig geometrisk rekke når k er et andregradsuttrykk, f.eks. x^2?
Da må jo -1 < x^2 < 1, men hvordan kan man da løse for å finne kovergensområdet? Har fått det fint til med enkle uttrykk, men plutselig sa det stopp her..

Re: R2 - Eksamen 22.mai. Megatråd!
Posted: 20/05-2017 20:41
by Drezky
TFZ wrote:Hei igjen! Noen som kan forklare fremgangsmåten for å finne konvergensområdet for en uendelig geometrisk rekke når k er et andregradsuttrykk, f.eks. x^2?
Da må jo -1 < x^2 < 1, men hvordan kan man da løse for å finne kovergensområdet? Har fått det fint til med enkle uttrykk, men plutselig sa det stopp her..

Løs ulikhetene
[tex]-1<k<1 \Longleftrightarrow -1<k\,\, \wedge k<1[/tex]
og kombiner løsningene du får slik at de tilfredstiller begge ulikhetene
Alternativt kan du bruke at [tex]-1<k<1 \Longleftrightarrow k^2<1\Rightarrow x^4<1 \Rightarrow (x-1)(x+1)(x^2+1)<0[/tex]
Re: R2 - Eksamen 22.mai. Megatråd!
Posted: 20/05-2017 20:49
by TFZ
Drezky wrote:
Løs ulikhetene
[tex]-1<k<1 \Longleftrightarrow -1<k\,\, \wedge k<1[/tex]
og kombiner løsningene du får slik at de tilfredstiller begge ulikhetene
Alternativt kan du bruke at [tex]-1<k<1 \Longleftrightarrow k^2<1\Rightarrow x^4<1 \Rightarrow (x-1)(x+1)(x^2+1)<0[/tex]
Takk for svar! Det var slik jeg begynte å løse det, med at -1 < x^2 og x^2 < 1, men får da fikk jeg på den siste at x < 1 (antar jeg feil hvis jeg tror at jeg kan ta roten av uttrykkene i en ulikhet...? Og burde det egentlig bli x < +- 1 da?). På den første av de fikk jeg ikke noen løsning, da man ikke kan ta roten av et negativt uttrykk.... Tror nok det er enklere enn hodet mitt skal ha det til, men det skulle visstnok vœre litt vanskelig akkurat nå.

Re: R2 - Eksamen 22.mai. Megatråd!
Posted: 20/05-2017 21:16
by Drezky
TFZ wrote:Drezky wrote:
Løs ulikhetene
[tex]-1<k<1 \Longleftrightarrow -1<k\,\, \wedge k<1[/tex]
og kombiner løsningene du får slik at de tilfredstiller begge ulikhetene
Alternativt kan du bruke at [tex]-1<k<1 \Longleftrightarrow k^2<1\Rightarrow x^4<1 \Rightarrow (x-1)(x+1)(x^2+1)<0[/tex]
Takk for svar! Det var slik jeg begynte å løse det, med at -1 < x^2 og x^2 < 1, men får da fikk jeg på den siste at x < 1 (antar jeg feil hvis jeg tror at jeg kan ta roten av uttrykkene i en ulikhet...? Og burde det egentlig bli x < +- 1 da?). På den første av de fikk jeg ikke noen løsning, da man ikke kan ta roten av et negativt uttrykk.... Tror nok det er enklere enn hodet mitt skal ha det til, men det skulle visstnok vœre litt vanskelig akkurat nå.

[tex]-1<x^2<1[/tex]
Tilfelle 1
[tex]-1<x^2\Longleftrightarrow 0<x^2+1[/tex] som stemmer for [tex]x\in \mathbb{R}[/tex]
Tilfelle 2
[tex]x^2<1\Longleftrightarrow x^2-1<0\Longleftrightarrow (x+1)(x-1)<0[/tex]
Fortegnslinje
----------------------------------------------1----------1---------------------------------> x-akse
(x+1) - - - - - - - - - - - - - - - - - - - - 0++ +++++++++++++++++++++++++++++++
(x-1) - - - - - - - - - - - - - - - - - - - - - - - - - - 0 ++++++++++++++++++++++++++
(x+1)(x-1)++++++++++++++++++++++++0 - - - - - 0 ++++++++++++++++++++++++++
dvs. konvergeringsområdet er når [tex]x\in \left \langle -1,1 \right \rangle[/tex]
Re: R2 - Eksamen 22.mai. Megatråd!
Posted: 20/05-2017 21:18
by hjelp34324
Kunne noen gått fort igjennom trig likning.
sin x - cos x = 1
x eksisterer [-2pi,2pi]
takk om noen kan : )
Re: R2 - Eksamen 22.mai. Megatråd!
Posted: 20/05-2017 21:31
by TFZ
Drezky wrote:
dvs. konvergeringsområdet er når [tex]x\in \left \langle -1,1 \right \rangle[/tex]
Ahaaaa, så om jeg forstår det rett, så gir den første løsningen verdier over 0, mens den andre løsningen begrenser det til mellom -1 og 1, slik at den første løsningen finnes inni det andre intervallet, men "kuttes av" ved 1 for at begge skal gjelde?
Tusen takk for grundig forklaring!
Re: R2 - Eksamen 22.mai. Megatråd!
Posted: 20/05-2017 21:31
by Drezky
hjelp34324 wrote:Kunne noen gått fort igjennom trig likning.
sin x - cos x = 1
x eksisterer [-2pi,2pi]
takk om noen kan : )
Du kan omforme likninga :
enten til sinusfunksjon, eller til cosinusfunksjon
Velger cosinus her
[tex]a\cos cx+b \sin cx+d=A \cos (cx-\phi)+d[/tex]
[tex]A=\sqrt{a^2+b^2}=\sqrt{(-1)^2+1^2}=\sqrt{2}[/tex] [tex]tan \phi =\frac{b}{a}=\frac{1}{-1}\Rightarrow \phi =arctan(-1)=-\frac{\pi}{4}[/tex]
Ettersom [tex](a,b)=(-1, 1)[/tex] ligger i 2 kvadrant, og vinkelen [tex]-\frac{\pi}{4}[/tex] ligger i 4.kvadrant må vi gjør om vinkel
[tex]\phi=-\frac{\pi}{4}+\pi=\frac{3\pi}{4}[/tex]
[tex]\sin x-\cos x=\sqrt{2} \cos\left ( x-\frac{3\pi}{4} \right )[/tex]
[tex]\sqrt{2} \cos\left ( x-\frac{3\pi}{4} \right )=1\Rightarrow \cos\left ( x-\frac{3\pi}{4} \right )=\frac{1}{\sqrt{2}}[/tex]
Dette gir opphav til :
[tex]x-\frac{3\pi}{4}=\pm \frac{\pi}{4}+2\pi n[/tex]
Som gir [tex]L \in \left \{ \pi, \frac{\pi}{2},-\pi,-\frac{3\pi}2{} \right \}[/tex]
Re: R2 - Eksamen 22.mai. Megatråd!
Posted: 20/05-2017 21:36
by Willads
Drezky wrote:Faseforskyvning finner man ved å betrakte det første skjæringspunkt mellom likevektslinje og oppadstigende graf
[tex]\phi=-c*x_0[/tex]
Her er [tex]x_0=-1.14[/tex]
så [tex]\phi =-2*-1.14=2.28[/tex]
Dette kunne du også funnet ved denne måten:
likevektslinja skjærer grafen f, og er oppdastigende mellom et bunnpunkt og et toppunkt
perioden her er : [tex]P=2.79-(0.35)\approx \pi[/tex]
avstanden mellom ett toppbunkt og ett bunnpunkt er en halv periode, slik at bunnpunktet til venstre for toppunktet [tex](-0.35, 7)[/tex] blir da
[tex](-0.35-\frac{\pi}{2},3)=(-1.92, 3)[/tex]
faseforskyvning er da midt mellom:
[tex]-\frac{{\phi}}{c}=\frac{-0.35+(-1.92)}{2} \Longrightarrow \phi =2.27[/tex]
Tusen takk. Er det slik at man kan velge selv hvilket oppadstigende skjæringspunkt med likevektslinjen man vil bruke? Ser jo at om man bruker punktet (2,5) så blir løsningsgrafen helt lik, men synes det er et penere svar...
Takk
Re: R2 - Eksamen 22.mai. Megatråd!
Posted: 20/05-2017 22:40
by thuelipan
Hei, eg har også eksamen på mandag

Eg lurer på korleis eg skal tegne retningsdiagram for ei difflikning uten hjelpemiddel på del 1, eller om det ikkje vil komme som ei oppgåve?
Då tenke eg på dette kompetansemålet: løse differensiallikninger og tegne retningsdiagrammer og integralkurver, og tolke dem ved å bruke digitale hjelpemidler
Re: R2 - Eksamen 22.mai. Megatråd!
Posted: 20/05-2017 23:19
by efaf
Hei!
På oppgave 9, del 1, vår 2015, har jeg stått fast i en time...
Så oppgaven er å løse sinx+cosx=1. Har fått til å forenkle uttrykket til sqrt(2)*sin(x+pi/4)=1. Men det jeg ikke skjønner fra fasiten er at tan o= pi/4 også kan skrives som pi-pi/4. Dette blir jo ikke riktig da punktet skal være (1,1) og dermed i første kvadrant.
Re: R2 - Eksamen 22.mai. Megatråd!
Posted: 20/05-2017 23:26
by Guest
noen som vet om det er relevant på eksamen oppgaver som rente, kapital, nåverdig, serielån osv.???
Re: R2 - Eksamen 22.mai. Megatråd!
Posted: 21/05-2017 00:06
by Fysikkmann97
Jeg vet ikke hvilken fasit du ser på, men av de tre fasitene jeg har sett igjennom (NDLA + de to som ligger på matematikk.net) så er det ingen som setter o = pi - pi/4. Du mistolker sikkert det at $sin u = \frac {1}{\sqrt 2} \Rightarrow u_1 = \frac {\pi}{4} \vee u_2 = \pi - \frac{\pi}{4}$
Da står man igjen med uttrykket som er u, og man løser da det for x. Fasiten har sløyfet dette steget og erstattet den eksakte vinklene som løser likningen.
Re: R2 - Eksamen 22.mai. Megatråd!
Posted: 21/05-2017 00:36
by Guest
hva burde ikke prioriteres ?
øknomiske del av algebra?
Re: R2 - Eksamen 22.mai. Megatråd!
Posted: 21/05-2017 09:53
by Guest
Gjest wrote:hva burde ikke prioriteres ?
øknomiske del av algebra?
?
Re: R2 - Eksamen 22.mai. Megatråd!
Posted: 21/05-2017 12:17
by Privatist
Hei.
Skal ta matte R2 imorgen som privatist.
Noen her som vet om del2 MÅ leveres digitalt? Eller er det tillatt å løse del2 både på papir og digitalt?
Takk for svar
