hm..
Hvorfor i granskauen(!) blir [tex]2u-2lnu=2\sqr x-2\ln(1+\sqr x)+C[/tex] når [tex]u=1+\sqr x[/tex] ? Regner med det har noe med C å gjøre, har ikke vært borti sånt, selv om jeg har vært ute ei vinternatt før!!
integral
Moderators: Aleks855, Gustav, Nebuchadnezzar, Janhaa, DennisChristensen, Emilga
The square root of Chuck Norris is pain. Do not try to square Chuck Norris, the result is death.
http://www.youtube.com/watch?v=GzVSXEu0bqI - Tom Lehrer
http://www.youtube.com/watch?v=GzVSXEu0bqI - Tom Lehrer
Da var det slik jeg trodde (og håpet) takk så mycket
The square root of Chuck Norris is pain. Do not try to square Chuck Norris, the result is death.
http://www.youtube.com/watch?v=GzVSXEu0bqI - Tom Lehrer
http://www.youtube.com/watch?v=GzVSXEu0bqI - Tom Lehrer
skjønte ikke den omformingen, kan noen forklare ?sEirik wrote:Du mener velTommy H wrote:[tex]\int\frac{2\sqrt{x}}{u}du=\int\frac{2(u-1)}{u}du=2u-2\ln u=2(\sqrt{x}-\ln\sqrt{x})[/tex]
[tex]\int\frac{1}{1 + \sqrt {x}}dx=\int\frac{2(u-1)}{u}du=2u-2\ln u=2(\sqrt{x}-\ln(\sqrt{x} + 1)) + C[/tex]

[tex]\int \frac{1}{1+\sqrt{x}}\rm{d}x[/tex]
Substitusjon:
[tex]u = 1 + \sqrt{x} \ , \ u^, = \frac{1}{2\sqrt{x}} = \frac{1}{2(u-1)} \ , \ \frac{\rm{d}u}{\rm{d}x} = \frac{1}{2(u-1)} \ \Rightarrow \ \rm{d}x = 2(u-1)\rm{d}u[/tex]
Setter inn:
[tex]\int \frac{1}{u} \ \cdot \ 2(u-1)\rm{d}u = 2\int \frac{u-1}{u}\rm{d}u = 2\int 1 - \frac{1}{u}\rm{d}u = 2(u - \ln{u}) + C [/tex]
Ergo:
[tex]\int \frac{1}{1 + \sqrt{x}}\rm{d}x = 2(\sqrt{x} + 1 - \ln{(\sqrt{x} + 1)} + C = 2(\sqrt{x} - \ln{(\sqrt{x}+1)}) + C[/tex]
Substitusjon:
[tex]u = 1 + \sqrt{x} \ , \ u^, = \frac{1}{2\sqrt{x}} = \frac{1}{2(u-1)} \ , \ \frac{\rm{d}u}{\rm{d}x} = \frac{1}{2(u-1)} \ \Rightarrow \ \rm{d}x = 2(u-1)\rm{d}u[/tex]
Setter inn:
[tex]\int \frac{1}{u} \ \cdot \ 2(u-1)\rm{d}u = 2\int \frac{u-1}{u}\rm{d}u = 2\int 1 - \frac{1}{u}\rm{d}u = 2(u - \ln{u}) + C [/tex]
Ergo:
[tex]\int \frac{1}{1 + \sqrt{x}}\rm{d}x = 2(\sqrt{x} + 1 - \ln{(\sqrt{x} + 1)} + C = 2(\sqrt{x} - \ln{(\sqrt{x}+1)}) + C[/tex]
Last edited by zell on 10/08-2007 19:16, edited 1 time in total.