Kan noen hjelpe meg med formelen/hva enn det måte være

Moderatorer: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa
Dette er feil, høyden i en likesidet trekant er IKKE halvparten av sidelengden. Formelen din er feil.tersvenn skrev:siden i kvadratet blir da s=[rot][/rot]A=[rot][/rot]64=8 som er høyden i trekanten samt halve sidelengden. Gang svaret med to for å få sidelengden i trekanten.
Test: A=(G*h)/2=(16x8)/2=128/2=64
Dere har vel hatt Pytagoras' læresetning? Da er den ganske lett å løse:Y=aX+b skrev:Skjønte ikke dette here.
Vi går på ungdomsskolen og får en oppgave om dette? Sprøtt.
Er ikke det en annen måte å løse den på?
Cosinus er ikke pensum.
Nei... Glemte å skrive det... Da påstår du at høyden er 14,9 cm.... g x h / 2 = AThomasB skrev:Dere har vel hatt Pytagoras' læresetning? Da er den ganske lett å løse:Y=aX+b skrev:Skjønte ikke dette here.
Vi går på ungdomsskolen og får en oppgave om dette? Sprøtt.
Er ikke det en annen måte å løse den på?
Cosinus er ikke pensum.
Del trekanten i to rettvinklede trekanten. Du ser da at i den rettvinklede trekanten er:
hypotenusen = s
den korteste av de andre sidene = s/2
høyden i den store trekanten = h er den lengste av katetene
Pytagoras sier:
(s/2)[sup]2[/sup] + h[sup]2[/sup] = s[sup]2[/sup]
Derfor er h = [rot][/rot](s[sup]2[/sup] - (s/2)[sup]2[/sup]) = s/2 * [rot][/rot]3
Og vi vet også at arealet av hele trekanten er
A = grunnlinje*høyde/2 = s*h/2 = s*s*([rot][/rot]3)/4
Her oppdaget jeg en liten faktor 2 feil i forrige post, får visst rette opp det...
Svaret blir i hvert fall:
s = √(4A/√3) = √(4*64/√3) = √(295.60) = 17.193