Følgjer og rekkjer

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

Moderatorer: Aleks855, Gustav, Nebuchadnezzar, Janhaa, DennisChristensen, Emilga

Svar
dahle-g
Noether
Noether
Innlegg: 37
Registrert: 02/05-2017 00:17

Hei! OPPGÅVE 6.83 SIGMA R2 2015
Har ei oppgåve som eg ikkje forstår korleis den kan løysast.
Korleis kan ein addere desse to rekkjene og finne rekkjeutviklinga for sinh x og cosh x.
Er det nokon som kan hjelpe meg her?
Sjå oppgåve teksten nedanfor

Oppgåve 6.83
Vi definerer dei såkalla hyperbolske funksjonane slik:

sinh x = (e^x- e^(- x))/2 (hyperbolske sinus)

cosh x = (e^x + e^(- x))/2 (hyperbolske cosinus)

Ei kjend rekkje er

e^x = 1 + x + 1/2ǃ x^2 + 1/3ǃ x^3 + 1/4ǃ x^4 + . . .

Byter vi ut x med – x i denne Taylor rekkja, får vi

e^(- x) = 1 – x + 1/2ǃ x^2 – 1/3ǃ x^3 + 1/4ǃ x^4 – . . .

Desse to rekkjene kan adderast ledd for ledd. Då får vi ei rekkjeutvikling for hyperbolsk sinus og hyperbolsk cosinus. Finn rekkjeutviklinga for sinh x og cosh x.
!
Har ei oppgåve 6.83 Sigma R2 2015
Forstår ikkje korleis ein kan addere desse rekkjene
Oppgåve tekst
Janhaa
Boltzmann
Boltzmann
Innlegg: 8388
Registrert: 21/08-2006 02:46
Sted: Grenland

se på rekkeutviklinga til cosh(x)

https://www.wolframalpha.com/input/?i=s ... osh%28x%29

og deretter på tilsvarende til

https://www.wolframalpha.com/input/?i=s ... 5E%28-x%29

da sees at:



kan gjøre tilsvarende for sinh(x)
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Mattebruker
Cayley
Cayley
Innlegg: 71
Registrert: 26/02-2021 21:28

Kontroll sinh-rekka: Grafen til sinh-funksjonen er symm. om origo (odde funksjon ). Det tilseier at sinh-rekka har ledd av berre odde orden ( x , x , x, o.s.v..... )

Kontroll cosh-rekka: Grafen er symm. om y-aksen ( jamn funksjon ) og kryssar denne i punktet ( 0 , 1 ). Den tilh. Taylor-rekka får dermed ledd av berre partalsorden( 1 , x, x, x, o.s.v..... )
dahle-g
Noether
Noether
Innlegg: 37
Registrert: 02/05-2017 00:17

Hei!
Ser av funksjonen til sinh x og cosh x at dei er oddetalsorden og partalsorden.
Men korleis kjem eg fram det det som står i fasiten.

sinh x = x + 1/3ǃ x^3 + 1/5ǃ x^5 + 1/7ǃ x^7 + . . .

cosh x = 1 + x + 1/2ǃ x^2 + 1/4ǃ x^4 + 1/6ǃ x^6 + . . .
Mattebruker
Cayley
Cayley
Innlegg: 71
Registrert: 26/02-2021 21:28

sinh = ( pr. def. )

Taylor-rekka for sinh ?

Ta utgangspunkt i Taylorrekka for e og e ( jamfør hintet du presenterte i første innlegget ditt )
Så subtraherer vi e- rekka frå e-rekka , og til slutt deler vi differansen på 2 ( jamfør definisjonen på sinh - sjå ovanfor ).
Da ser vi at ledd med partallig orden, samt konstantledda , nullar seg ut parvis , og vi endar opp med ei rekke der alle x-potensar er av odde orden.

Når det gjeld cosh-rekka, brukar vi same framgangsmåten, men no er det ledd av odde orden som fell vekk. Slik endar vi opp med ei rekke der alle x-potensar har partallig orden.
dahle-g
Noether
Noether
Innlegg: 37
Registrert: 02/05-2017 00:17

Tusen takk for super hjelp
Då gikk det opp eit lys for meg. og alt fall på plass.
Då sette eg berre tala frå dei to rekkjene inn i for sinh x og cosh x
og då fikk eg rekkjene som var gitt i fasiten
Svar