R2 matte diff likninger

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

R2 matte diff likninger

Innlegg hasish » 08/04-2021 08:15

Oppgave om fallskjermhopper (diff. likninger):
Hvordan skal jeg løse den?
Vi regner at luftmotstanden for en fallskjermhopper er proporsjonal med farten. Når fallskjermen løser seg ut, er farten 47 m/s. Sett k = 140.
Fallskjermhopperen har massen m = 72 kg.
a) Hva nærmer farten seg etter hvert?
b) Finn farten v(t) t sekunder etter at fallskjermen er løst ut.
c) Finn når farten er 25 m/s.
d) Finn formelen s(t) for den tilbakelagte veistrekningen etter tiden t.
e) Fallskjermen løses ut i en høyde på 1700 meter. Hvor lang tid tar det før fallskjermhopperen treffer bakken?
hasish offline
Pytagoras
Pytagoras
Innlegg: 18
Registrert: 07/04-2021 00:52

Re: R2 matte diff likninger

Innlegg Mattebruker » 08/04-2021 08:58

Hint: Ta utgangspunkt i kraftlova

( * ) ( [tex]\sum[/tex]F = m a = m v' )

( ** ) [tex]\sum[/tex]F = Tyngda( G ) - luftmotstanden( L ) = m g - k[tex]\cdot[/tex]v

Ved å kombinere ( * ) og ( ** ) får vi ei lineær 1. ordens difflikning med farta ( v( t ) ) som ukjend. Denne kan vi løyse " for hand " ( multiplisere med integrerande faktor ) eller meir direkte ved å bruke CAS-verktøyet i GeoGebra.
Sist endret av Mattebruker den 08/04-2021 09:20, endret 1 gang
Mattebruker offline
Cayley
Cayley
Innlegg: 70
Registrert: 26/02-2021 21:28

Re: R2 matte diff likninger

Innlegg hasish » 08/04-2021 09:11

a) fant ut at v= mg/k + Ce^(-k*t/m)
Dvs. at farten v =mg/k= (72*9.8)/140 =5.04 m/s.

fARTEN nærmer seg 5.04 m/s. er det riktig?
hasish offline
Pytagoras
Pytagoras
Innlegg: 18
Registrert: 07/04-2021 00:52

Re: R2 matte diff likninger

Innlegg Mattebruker » 08/04-2021 09:16

Kontroll: Fallskjermhopparen fell med konstant fart når luftmotstanden L balanserer Tyngda G ( [tex]\sum F[/tex] = 0 )
Mattebruker offline
Cayley
Cayley
Innlegg: 70
Registrert: 26/02-2021 21:28

Re: R2 matte diff likninger

Innlegg hasish » 08/04-2021 09:20

b) fikk jeg 5.04 + Ce^(-1.94*t)
C= 41.96
5.04 + 41.96*e^(-1.94*t)

iks?
hasish offline
Pytagoras
Pytagoras
Innlegg: 18
Registrert: 07/04-2021 00:52

Re: R2 matte diff likninger

Innlegg hasish » 08/04-2021 09:29

hvordan skal jeg gå fram i oppgave c)

Ved å sette 25 =5.04 + 41.96*e^(-1.94*t) ?
hasish offline
Pytagoras
Pytagoras
Innlegg: 18
Registrert: 07/04-2021 00:52

Re: R2 matte diff likninger

Innlegg Mattebruker » 08/04-2021 09:31

v( t ) = 5.04 + 41.96[tex]\cdot[/tex]e[tex]^{-\frac{k\cdot t}{m}}[/tex] ( Full kontroll så langt ! )

Vedk. punkt c: Likning rett oppstilt. Eit godt råd : La sekretæren ( CAS ) gjere jobben !
Sist endret av Mattebruker den 08/04-2021 09:35, endret 1 gang
Mattebruker offline
Cayley
Cayley
Innlegg: 70
Registrert: 26/02-2021 21:28

Re: R2 matte diff likninger

Innlegg hasish » 08/04-2021 09:34

yes godt å høre, det står at det skal helst gjøres for hånd

men skjønner ikke c

Ved å sette 25 =5.04 + 41.96*e^(-1.94*t) ? Er dette riktig?
hasish offline
Pytagoras
Pytagoras
Innlegg: 18
Registrert: 07/04-2021 00:52

Re: R2 matte diff likninger

Innlegg hasish » 08/04-2021 09:46

skjønner fortsatt ikke c) *man kan ikke bruke CAS.

er oppgave d)
s(t) = intregralet(v(t)dt)
der v( t ) = 5.04 + 41.96⋅e^(-1.94*t)
hasish offline
Pytagoras
Pytagoras
Innlegg: 18
Registrert: 07/04-2021 00:52

Re: R2 matte diff likninger

Innlegg hasish » 08/04-2021 09:58

stemmer oppg c og d?
hasish offline
Pytagoras
Pytagoras
Innlegg: 18
Registrert: 07/04-2021 00:52

Re: R2 matte diff likninger

Innlegg Mattebruker » 08/04-2021 09:59

Vedk. punkt c: Spørsmål av denne typen vil neppe dukke opp på Del 1 ved ein eventuell skriftleg eksamen. Det betyr at du har tilgang til digitale hjelpemiddel ( CAS )
når du skal løyse dette problemet. Hugs at da sparer du verdifull tid ! Du kan sjølvsagt også løyse problemet( likninga ) for hand , men det blir
som å " gå over bekken etter vatn ".

Vedk. punkt d : Veglengda s = [tex]\int[/tex]v( t ) dt ( heilt korrekt ! )
Mattebruker offline
Cayley
Cayley
Innlegg: 70
Registrert: 26/02-2021 21:28

Re: R2 matte diff likninger

Innlegg hasish » 08/04-2021 10:07

Så d) blir s = ∫v( t ) dt = ∫5.04 + 41.96⋅e^(-1.94*t) dt

s(t)= 5.04t + 21.6e^(-1.94*t) + C
hasish offline
Pytagoras
Pytagoras
Innlegg: 18
Registrert: 07/04-2021 00:52

Re: R2 matte diff likninger

Innlegg hasish » 08/04-2021 10:12

er oppgave d) riktig ? og kan du vise meg hvordan oppg. c løses på CAS ?
hasish offline
Pytagoras
Pytagoras
Innlegg: 18
Registrert: 07/04-2021 00:52

Re: R2 matte diff likninger

Innlegg hasish » 08/04-2021 10:28

Skjlnner ikke c på Cas?!?
hasish offline
Pytagoras
Pytagoras
Innlegg: 18
Registrert: 07/04-2021 00:52

Re: R2 matte diff likninger

Innlegg Mattebruker » 08/04-2021 10:33

Vedk. punkt c:

1) Legg inn likninga( sjå tidlegare innlegg ) på 1. linje i CAS-feltet.
2) Trykk på [tex]\approx[/tex]-tasten på verktøylinja. Da vil løysinga( tilnærma verdi ) dukke opp på neste linje i CAS-feltet.

Vedk. punkt d: Ser greitt ut , men du må bestemme verdien på konstantleddet( C ) også . Hugs at s( 0 ) = 1700 ( jamfør oppgavetekst ) .
Mattebruker offline
Cayley
Cayley
Innlegg: 70
Registrert: 26/02-2021 21:28

Neste

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 48 gjester