matriser

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk på høyskolenivå. Alle som har kunnskapen er velkommen med et svar. Men, ikke forvent at admin i matematikk.net er spesielt aktive her.

Moderators: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa

Post Reply
xly6ak
Noether
Noether
Posts: 20
Joined: 14/09-2011 21:04

jeg har fått denne oppgaven.

vi har en matrise vi kaller A. og det finnes en vektor x slik at

Ax = 2x

Regn ut produktet

A^100 x

A^100 betyr at vi multipliserer matrisen A med seg selv 100 ganger.

hvordan gjør man en slik oppgave. er svaret: A er en identitets matrise * 2

og A^100 x = 2^100[x,y]

eller er det helt feil
Vektormannen
Euler
Euler
Posts: 5889
Joined: 26/09-2007 19:35
Location: Trondheim
Contact:

Du vet at [tex]A\vec{x} = 2\vec{x}[/tex]. Hva skjer når du ganger denne ligningen med A på begge sider?
Elektronikk @ NTNU | nesizer
xly6ak
Noether
Noether
Posts: 20
Joined: 14/09-2011 21:04

Vektormannen wrote:Du vet at [tex]A\vec{x} = 2\vec{x}[/tex]. Hva skjer når du ganger denne ligningen med A på begge sider?

regner med man får A^2x = A2x. ?. skal jeg gange med A 100 ganger da?? :P. men er det jeg skrev i første post helt feil?
Vektormannen
Euler
Euler
Posts: 5889
Joined: 26/09-2007 19:35
Location: Trondheim
Contact:

Beklager, jeg så ikke at du hadde skrevet et svar i sted. Svaret ditt ser riktig ut :) (hvis jeg har forstått oppgaven rett.) Hvordan har du regnet?
Elektronikk @ NTNU | nesizer
xly6ak
Noether
Noether
Posts: 20
Joined: 14/09-2011 21:04

Vektormannen wrote:Beklager, jeg så ikke at du hadde skrevet et svar i sted. Svaret ditt ser riktig ut :) (hvis jeg har forstått oppgaven rett.) Hvordan har du regnet?
litt av problemet er at jeg ikke vet hva som forventes av svar.

men jeg tenkte bare intuetivt at viss Ax = 2x. så må matrisen A=I*2?.
(I er da en identitets matrise som fungerer på samme måte som å gange med 1)

så er spm hva er A^100 * x

viss A=I*2 så kan jeg bare opphøye 2^100 og så gange A med vektoren x. siden jeg tror A er en identitets matrise så blir svaret bare x*2^100 altså 2^100*[x,y].

det var ivertfall slik jeg tenkte, men har ingen anelse om det er slikt jeg skal svare eller om jeg er helt på villspor
Vektormannen
Euler
Euler
Posts: 5889
Joined: 26/09-2007 19:35
Location: Trondheim
Contact:

Det er ikke riktig å slutte at hvis [tex]A \vec{x} = 2x[/tex] så må [tex]A = 2 I[/tex]. Husk at matrisemultiplikasjon foregår på en helt annen måte enn å gange en vektor med en skalar.

F.eks. så er [tex]\left[\begin{array}{lr}3 & 6\\1 & 4\end{array}\right]\left[\begin{array}{c}2\\ 1\end{array}\right] = 6 \cdot \left[\begin{array}{c}2\\ 1\end{array}\right][/tex]

selv om matrisen til venstre ikke er 6I.

Det du heller må bruke her er at [tex]A\vec{x} = 2\vec{x} \ \Rightarrow \ AA\vec{x} = 2A\vec{x} = 2 \cdot 2\vec{x} = 2^2\vec{x}[/tex] og så videre. Så du ender altså opp med svaret du fant, men det er en helt annen tankegang som ligger bak.
Elektronikk @ NTNU | nesizer
Post Reply