Ser det ikke selv, men skal gå gjennom det litt mer grundig i morgen.
Har ikke noe fasitsvar klart.
Kjerneregelen:
[tex]\frac{d}{dx}[f(g(x))] \;=\; f^{\tiny\prime}(g(x))g^{\tiny\prime}(x)[/tex]
Definisjonen til den deriverte (Newton's):
[tex]f^{\tiny\prime}(x) := \lim_{h\rightarrow0}\frac{f(x+h) - f(x)}{h}[/tex]
[tex](f\circ g)^{\tiny\prime}(x) \;=\; \lim_{h\rightarrow0}\frac{f(g(x+h)) - f(g(x))}{h}[/tex]
Bevis (falskt)
[tex](f\circ g)^{\tiny\prime}(x)\cdot\left\(\frac{1}{g^{\tiny\prime}(x)}\right\)[/tex]
[tex]\quad=\quad \lim_{h\rightarrow0}\left\(\frac{f(g(x+h)) - f(g(x))}{h}\right\)\cdot\left\(\frac{h}{g(x+h) - g(x)}\right\)[/tex]
[tex]\quad=\quad \lim_{h\rightarrow0}\left\(\frac{f(g(x+h)) - f(g(x))}{g(x+h) - g(x)}\right\) \;=\; f^{\tiny\prime}(g(x))[/tex]
Det vil si:
[tex](f\circ g)^{\tiny\prime}(x)\cdot\left\(\frac{1}{g^{\tiny\prime}(x)}\right\) \;=\;f^{\tiny\prime}(g(x)) \quad\Longrightarrow[/tex]
[tex](f\circ g)^{\tiny\prime}(x) \;=\; f^{\tiny\prime}(g(x))g^{\tiny\prime}(x)\quad[/tex] Q.E.D
Men hva er det som er galt? Jeg klarer ikke å se det.

Mitt første inntrykk er at det er noe muffins i den tredje linjen, der man har g(x + h) - g(x) i brøken til definisjonen av den deriverte. Men det går jo allikevel mot null?