Side 1 av 1
Grenseverdi
Lagt inn: 21/01-2009 13:24
av espen180
Ved derivasjon av den naturlige logaritmen ved definisjonen på den deriverte vil man komme fram til grenseverdien
[tex]\lim_{h\to 0} \left(\frac{x+h}{x}\right)^{\frac 1h}=e^{\frac{1}{x}}[/tex]
Kan noen vise hvorfor dette stemmer? (Vise en utregning?)
Re: Grenseverdi
Lagt inn: 21/01-2009 16:50
av Janhaa
espen180 skrev:Ved derivasjon av den naturlige logaritmen ved definisjonen på den deriverte vil man komme fram til grenseverdien
[tex]\lim_{h\to 0} \left(\frac{x+h}{x}\right)^{\frac 1h}=e^{\frac{1}{x}}[/tex]
Kan noen vise hvorfor dette stemmer? (Vise en utregning?)
Kanskje hjelper dette;
http://www.thestudentroom.co.uk/showthread.php?t=497963
Lagt inn: 21/01-2009 17:03
av espen180
Jo takk, det var nyttig!

Der klaffet den.
Lagt inn: 21/01-2009 17:09
av Charlatan
Kanskje lettere:
[tex]\lim_{h \to 0 } (\frac{x+h}{x})^{\frac{1}{h}}=\lim_{h \to 0 } (1+\frac{h}{x})^{\frac{1}{h}}=\lim_{k \to 0 } (1+k)^{\frac{1}{kx}}=e^{\frac{1}{x}[/tex]
hvor [tex]k = \frac{h}{x}[/tex]
Lagt inn: 21/01-2009 17:37
av espen180
Ja, takk Jarle10. Den var lett å følge.
