Russisk polynom

Her kan brukere av forum utfordre hverandre med morsomme oppgaver og nøtter man ønsker å dele med andre. Dette er altså ikke et sted for desperate skrik om hjelp, de kan man poste i de andre forumene, men et sted for problemløsing på tvers av trinn og fag.

Russisk polynom

Innlegg Gustav » 02/06-2019 02:05

Polynomet $P(x)$ er slik at polynomene $P(P(x))$ og $P(P(P(x)))$ er strengt monotone på $\mathbb{R}$. Vis at $P(x)$ også er strengt monoton på $\mathbb{R}$.
Gustav offline
Tyrann
Tyrann
Brukerens avatar
Innlegg: 4296
Registrert: 12/12-2008 12:44

Re: Russisk polynom

Innlegg Markus » 01/07-2019 21:50

Hvis P(x) ikke er strengt monoton er $P(x)=P(y)$ for $x \neq y$, men siden $P(P(x))$ er strengt monoton er den injektiv og dermed vil $P(P(x))=P(P(y))$ implisere at $x=y$, en selvmotsigelse.

Mulig dette er feil da den ikke brukte P(P(P(x))) i det hele tatt.
Markus offline
Fermat
Fermat
Innlegg: 760
Registrert: 20/09-2016 12:48
Bosted: NTNU

Re: Russisk polynom

Innlegg Gustav » 02/07-2019 00:40

Markus skrev:Hvis P(x) ikke er strengt monoton er $P(x)=P(y)$ for $x \neq y$, men siden $P(P(x))$ er strengt monoton er den injektiv og dermed vil $P(P(x))=P(P(y))$ implisere at $x=y$, en selvmotsigelse.

Mulig dette er feil da den ikke brukte P(P(P(x))) i det hele tatt.


Løste den på samme måten selv :D
Gustav offline
Tyrann
Tyrann
Brukerens avatar
Innlegg: 4296
Registrert: 12/12-2008 12:44

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 7 gjester