Side 1 av 1

Grei funksjonalligning

Lagt inn: 16/01-2019 05:07
av Gustav
Finn alle funksjoner $f:\mathbb{R}\to\mathbb{R}$ slik at $$ f(x^2y)=f(xy)+yf(f(x)+y)$$ for alle $x,y$.

Re: Grei funksjonalligning

Lagt inn: 16/01-2019 08:37
av DennisChristensen
Gustav skrev:Finn alle funksjoner $f:\mathbb{R}\to\mathbb{R}$ slik at $$ f(x^2y)=f(xy)+yf(f(x)+y)$$ for alle $x,y$.
Lar vi $x=1$ får vi at $f(y) = f(y) + yf\left(f(1) + y\right)$, så $yf(f(1) + y) = 0$ for alle $y\in\mathbb{R}$. Det betyr at $f(f(1) + y) = 0$ for alle $y\neq 0$. Om vi skriver $z=f(1) + y$ kan dette formuleres som at $f(z) = 0$ for alle $z\neq f(1)$.

Case 1: $f(1) \neq 1$: Da forteller siste linje ovenfor at $f(1) = 0$. Om vi setter $x=0$ i den originale likningen får vi at $yf(f(0) + y) = 0$. Anta i jakt på en selvmotsigelse at $f(0) \neq 0$. Om vi lar $y=-f(0)\neq 0$ har vi at $f(0) = 0$, en selvmotsigelse, så vi konkluderer med at $f(0) = 0$. Vi vet altså at $f(z)=0$ for alle $z\neq 0$ og at $f(0) = 0$. Dermed ser vi at $f$er identisk lik $0$.

Case 2: $f(1) = 1$: Om vi lar $x=a>1$ og $y=1/a$ i den originale likningen får vi at $f(a) = f(1) + \frac1af(f(a) + \frac1a)$. Ettersom $f(a)=f(\frac1a)=0$ og $f(1) = 1$ får vi altså at $0 = 1 + 0$, en selvmotsigelse.

Dermed er $f\equiv 0$ eneste løsning.

Oppfølger: Finn alle kontinuerlige funksjoner $f: \mathbb{R}\rightarrow\mathbb{R}$ slik at $$f(f(f(x))) = x$$ for alle $x\in\mathbb{R}$.

Re: Grei funksjonalligning

Lagt inn: 16/01-2019 09:38
av Gustav
DennisChristensen skrev:
Gustav skrev:Finn alle funksjoner $f:\mathbb{R}\to\mathbb{R}$ slik at $$ f(x^2y)=f(xy)+yf(f(x)+y)$$ for alle $x,y$.
Lar vi $x=1$ får vi at $f(y) = f(y) + yf\left(f(1) + y\right)$, så $yf(f(1) + y) = 0$ for alle $y\in\mathbb{R}$. Det betyr at $f(f(1) + y) = 0$ for alle $y\neq 0$. Om vi skriver $z=f(1) + y$ kan dette formuleres som at $f(z) = 0$ for alle $z\neq f(1)$.

Case 1: $f(1) \neq 1$: Da forteller siste linje ovenfor at $f(1) = 0$. Om vi setter $x=0$ i den originale likningen får vi at $yf(f(0) + y) = 0$. Anta i jakt på en selvmotsigelse at $f(0) \neq 0$. Om vi lar $y=-f(0)\neq 0$ har vi at $f(0) = 0$, en selvmotsigelse, så vi konkluderer med at $f(0) = 0$. Vi vet altså at $f(z)=0$ for alle $z\neq 0$ og at $f(0) = 0$. Dermed ser vi at $f$er identisk lik $0$.

Case 2: $f(1) = 1$: Om vi lar $x=a>1$ og $y=1/a$ i den originale likningen får vi at $f(a) = f(1) + \frac1af(f(a) + \frac1a)$. Ettersom $f(a)=f(\frac1a)=0$ og $f(1) = 1$ får vi altså at $0 = 1 + 0$, en selvmotsigelse.

Dermed er $f\equiv 0$ eneste løsning.

Oppfølger: Finn alle kontinuerlige funksjoner $f: \mathbb{R}\rightarrow\mathbb{R}$ slik at $$f(f(f(x))) = x$$ for alle $x\in\mathbb{R}$.
Riktig det! Ved å sette x=0 direkte forenkles argumentasjonen litt. Oppgaven er fra Baltic way i 2017.

$f$ er injektiv, og en kontinuerlig injektiv funksjon er strengt monoton. Bevis: Injektiviteten følger av at $f(x)=f(y)$ impliserer $x=f(f(f(x))=f(f(f(y)))=y$. La $x<y$. Anta at $f$ er strengt synkende. Da er $f(x)>f(y)$, men da følger at $f(f(x))<f(f(y))$ og videre er $x=f(f(f(x)))>f(f(f(y)))=y$, som er en motsigelse. Ergo er $f$ strengt voksende. Anta $f(x)>x$. Da er $f(f(x))>f(x)$ og $x=f(f(f(x)))>f(f(x))>f(x)$, som er en motsigelse. Anta $f(x)<x$. Da er $f(f(x))<f(x)$ og $x=f(f(f(x)))<f(f(x))<f(x)$, også en motsigelse. Eneste løsning er $f(x)=x$ for alle $x$.

Oppfølger:

Finn alle funksjoner $f:\mathbb{R}\to \mathbb{R}$ slik at $$ f(f(y))+f(x-y)=f(xf(y)-x)$$ for alle reelle $x,y$.

Re: Grei funksjonalligning

Lagt inn: 19/01-2019 00:20
av Markus
Gustav skrev: Oppfølger:

Finn alle funksjoner $f:\mathbb{R}\to \mathbb{R}$ slik at $$ f(f(y))+f(x-y)=f(xf(y)-x)$$ for alle reelle $x,y$.
Det er kun en slik funksjon; $f(x)=0$.

Sett først $x=y=0$, da fås $f(f(0))=0$. Sett videre $y=f(0)$ som gir $f(0)+f(x-f(0))=f(-x)$. Observer at vi kan vise at $f(0)=0$ hvis vi finner en $x$ slik at $x-f(0)=-x$, for da vil de to leddene kansellere hverandre. Dette kan vi få ved å sette $x=\frac{f(0)}{2}$, som gir $f(0)=0$. Hvis vi nå setter $(x,y)=(x,0)$ i den originale funksjonallikningen fås $f(x)=f(-x)$. Ved å sette $(x,y)=(0,y)$ i den originale funksjonallikningen fås $f(f(y)) = -f(-y)$. Disse to siste faktumene gir at $$f(f(f(y)))=f(-f(f(y)))=f(f(-y))=f(f(y))=-f(-y)=-f(y)$$ og at $$f(f(f(y)))=f(-f(-y))=-f(f(f(y)))=-(-f(y))=f(y)$$ Så hvis vi setter det to uttrykkene for $f(f(f(y)))$ like hverandre fås $f(y)=-f(y) \implies f(y)=0$.

Oppfølger:
Finn alle funksjoner $f:\mathbb{R} \to \mathbb{R}$ slik at $$f(x+yf(x))=f(xf(y)) - x + f(y+f(x)) \qquad \forall x,y \in \mathbb{R}$$

Re: Grei funksjonalligning

Lagt inn: 19/01-2019 04:41
av Gustav
Markus skrev: Oppfølger:
Finn alle funksjoner $f:\mathbb{R} \to \mathbb{R}$ slik at $$f(x+yf(x))=f(xf(y)) - x + f(y+f(x)) \qquad \forall x,y \in \mathbb{R}$$
$x=0$ gir $f(yf(0))=f(0)+f(y+f(0))$. Anta først $f(0)\neq 1$, og la $y=\frac{f(0)}{f(0)-1}$ slik at $f(yf(0))=f(y+f(0))$. Da er $f(0)=0$, men da vil $f(y)=0$ for alle $y$. Setter vi inn i ligningen ser vi at dette ikke gir en løsning.

La derfor $f(0)=1$. $y=0$ i den opprinnelige ligningen gir $f(x)=f(x)-x+f(f(x))$, så $f(f(x))=x$. $x=0$ gir at $f(1)=0$. Sett $x=1$ i den opprinnelig ligningen. Da er $0=y-1+f(y)$, så $f(y)=1-y$ for alle $y$. Setter vi inn i opprinnelig ligning ser vi at denne løsningen stemmer, og er den eneste gyldige.

Re: Grei funksjonalligning

Lagt inn: 19/01-2019 12:05
av Gustav
Oppfølger: Finn alle $f:\mathbb{R}\to \mathbb{R} $ slik at $$ f(x^2+yf(x))=xf(x+y)$$ for alle reelle $x,y$.

Re: Grei funksjonalligning

Lagt inn: 19/01-2019 12:42
av Janhaa
Gustav skrev:Oppfølger: Finn alle $f:\mathbb{R}\to \mathbb{R} $ slik at $$ f(x^2+yf(x))=xf(x+y)$$ for alle reelle $x,y$.
[tex]f(x) = x[/tex]
?

Re: Grei funksjonalligning

Lagt inn: 19/01-2019 13:07
av Gustav
Janhaa skrev: [tex]f(x) = x[/tex]
?
Det er en løsning ja, men det fins vel også minst en annen?

Re: Grei funksjonalligning

Lagt inn: 19/01-2019 14:12
av zzzivert
La $x=y=0$. Da har vi $f(0)=0$.
Hvis $y=-x$ får vi $f(x^2-xf(x))=0$.
Anta at det eksisterer $a\neq 0$ slik at $f(a)=0$, og la $x=a$, da får vi:
$f(a^2)=af(a+y)$
derfor er $f(x)=c$ konstant, og $c=xc$, så $f(x)\equiv0$ er en løsning.

Dersom ikke $f(x)\equiv0$, har vi at $f(a)=0\Rightarrow a=0$.
Fra $f(x^2-xf(x))=0$ får vi at $x^2-xf(x)=0$ så $f(x)=x$ er den andre løsningen.

Re: Grei funksjonalligning

Lagt inn: 20/01-2019 12:22
av Gustav
zzzivert skrev:La $x=y=0$. Da har vi $f(0)=0$.
Hvis $y=-x$ får vi $f(x^2-xf(x))=0$.
Anta at det eksisterer $a\neq 0$ slik at $f(a)=0$, og la $x=a$, da får vi:
$f(a^2)=af(a+y)$
derfor er $f(x)=c$ konstant, og $c=xc$, så $f(x)\equiv0$ er en løsning.

Dersom ikke $f(x)\equiv0$, har vi at $f(a)=0\Rightarrow a=0$.
Fra $f(x^2-xf(x))=0$ får vi at $x^2-xf(x)=0$ så $f(x)=x$ er den andre løsningen.
Ser bra ut!

Re: Grei funksjonalligning

Lagt inn: 16/07-2019 03:17
av Gustav
Nok en oppfølger:

Finn alle funksjoner $f:\mathbb{R}\to\mathbb{R}$ slik at $$ f(x^2+xy)=f(x)f(y)+yf(x)+xf(x+y)$$ for alle reelle $x,y$.

Re: Grei funksjonalligning

Lagt inn: 16/07-2019 22:32
av Markus
Gustav skrev:Nok en oppfølger:

Finn alle funksjoner $f:\mathbb{R}\to\mathbb{R}$ slik at $$ f(x^2+xy)=f(x)f(y)+yf(x)+xf(x+y)$$ for alle reelle $x,y$.
Ikke komplett løsning; antar kontinuitet i $x=0,1$ og vet ikke om dette kan vises. Løsningene fungerer dog allikevel. Er også redd jeg overkompliserer denne noe voldsomt.

Dersom $x=y=0$ så fås $f(0)=f(0)^2$ så $f(0)=0$ eller $f(0)=1$. Anta først $f(0)=1$ og sett $x=0$, da fås $f(0)=f(0)f(y)+yf(0)$, altså $f(y)=1-y$.

Anta så $f(0)=0$, og sett $y=0$. Da fås $f(x^2)=xf(x)$. Som sagt antar fra nå kontinuitet i $x=0,1$, men vet ikke om dette kan vises enda. La $g(x)=f(x)/x$, noe som gir at $g(x^2)=g(x)$. Definer nå $(x_n)$ ved $x_n = \sqrt{x_{n-1}}$ og $x_0=x>0$ for $n \geq 1$. Siden $g(x^2)=g(x)$ er $g(x)=g(x_0)=g(x_1)=g(x_2)=\dots=g(x_n)$. Nå er $\lim_{n \to \infty} x_n = \lim_{n \to \infty} x^{1/2n} = 1$, så $g(x)=g(1)$. Nå får vi $f(x)=g(1)x$, og $g(1)=f(1)$. Med den originale funksjonallikningen og $x=y=1$ får vi $f(1)(f(1)+1)$ så $f(1)=0$ eller $f(1)=-1$. Dermed er $f(x)=0$ eller $f(x)=-x$.

For å konkludere er løsningene (i alle fall noen av de); $f(x)=0,f(x)=-x,f(x)=1-x$.

Re: Grei funksjonalligning

Lagt inn: 16/07-2019 23:10
av Gustav
Markus skrev: La $g(x)=f(x)/x$, noe som gir at $g(x^2)=g(x)$. Definer nå $(x_n)$ ved $x_n = \sqrt{x_{n-1}}$ og $x_0=x>0$ for $n \geq 1$. Siden $g(x^2)=g(x)$ er $g(x)=g(x_0)=g(x_1)=g(x_2)=\dots=g(x_n)$. Nå er $\lim_{n \to \infty} x_n = \lim_{n \to \infty} x^{1/2n} = 1$, så $g(x)=g(1)$. Nå får vi $f(x)=g(1)x$, og $g(1)=f(1)$. Med den originale funksjonallikningen og $x=y=1$ får vi $f(1)(f(1)+1)$ så $f(1)=0$ eller $f(1)=-1$. Dermed er $f(x)=0$ eller $f(x)=-x$.
Ser ut som løsningen din kunne fungert med antagelsen om kontinuitet i x=1. Men hvordan det skal kunne vises høres mer komplisert ut enn den løsningen jeg kom frem til.

Du behøver ikke anta kontinuitet for å vise at $f(x)=0$ eller $f(x)=-x$. Det kan vises ganske enkelt ved innsetting av noen passende verdier i ligningen.
Problemet som gjenstår er å vise at det ikke funker med en kombinasjon av disse, dvs. at det kan tenkes at det fins $a,b \neq 0$ slik at $f(a)=0$ og $f(b)=-b$. Det i seg selv er et hint om å bruke bevis ved motsigelse.

Re: Grei funksjonalligning

Lagt inn: 17/07-2019 16:10
av zzzivert
Gustav skrev:Nok en oppfølger:

Finn alle funksjoner $f:\mathbb{R}\to\mathbb{R}$ slik at $$ f(x^2+xy)=f(x)f(y)+yf(x)+xf(x+y)$$ for alle reelle $x,y$.
$x=y=0 \ \Rightarrow f(0)=f(0)^2 \ \Rightarrow f(0)=0 \ \vee \ 1$.
$x=0 \ \Rightarrow f(0)=f(0)(f(y)+y)$.
Så dersom $f(0)=1$ får vi $f(x)=1-x, \ \forall x\in \mathbb{R}$. Vi setter inn og verifiserer at dette faktisk er en løsning.
Dersom $f(0)=0$ og $y=0 \ \Rightarrow f(x^2)=xf(x)$, som gir $xf(x)=f(x^2)=f((-x)^2)=-xf(-x) \ \Rightarrow f(-x)=-f(x)$.
$y=-x \ \Rightarrow xf(x)=f(x)f(-x)=-f(x)^2 \ \Rightarrow f(x)=0 \ \vee f(x)=-x$ for enhver $x\in \mathbb{R}$.
La $x\neq 0, y=1-x$:
$f(x)(x-f(1-x))=xf(1) $
Siden $f(1-x)=0 \ \vee f(1-x)=-(1-x)=x-1$, så har vi at $x-f(1-x)\neq 0$ og derfor
$f(x)=0 \Leftrightarrow f(1)=0$.

Derfor har vi de tre løsningene:
1) $f(x)=1-x, \ \forall x\in \mathbb{R}$ (når $f(0)=1$).
2) $f(x)=-x, \ \ \ \ \forall x\in \mathbb{R}$ (når $f(1)=-1$).
3) $f(x)\equiv 0, \ \ \ \ \ \ \ \forall x\in \mathbb{R}$ (når $f(1)=0$).

Vi verifiserer at 2) og 3) faktisk er løsninger ved innsetting.

Re: Grei funksjonalligning

Lagt inn: 18/07-2019 20:12
av Gustav
zzzivert skrev: $x=y=0 \ \Rightarrow f(0)=f(0)^2 \ \Rightarrow f(0)=0 \ \vee \ 1$.
$x=0 \ \Rightarrow f(0)=f(0)(f(y)+y)$.
Så dersom $f(0)=1$ får vi $f(x)=1-x, \ \forall x\in \mathbb{R}$. Vi setter inn og verifiserer at dette faktisk er en løsning.
Dersom $f(0)=0$ og $y=0 \ \Rightarrow f(x^2)=xf(x)$, som gir $xf(x)=f(x^2)=f((-x)^2)=-xf(-x) \ \Rightarrow f(-x)=-f(x)$.
$y=-x \ \Rightarrow xf(x)=f(x)f(-x)=-f(x)^2 \ \Rightarrow f(x)=0 \ \vee f(x)=-x$ for enhver $x\in \mathbb{R}$.
La $x\neq 0, y=1-x$:
$f(x)(x-f(1-x))=xf(1) $
Siden $f(1-x)=0 \ \vee f(1-x)=-(1-x)=x-1$, så har vi at $x-f(1-x)\neq 0$ og derfor
$f(x)=0 \Leftrightarrow f(1)=0$.

Derfor har vi de tre løsningene:
1) $f(x)=1-x, \ \forall x\in \mathbb{R}$ (når $f(0)=1$).
2) $f(x)=-x, \ \ \ \ \forall x\in \mathbb{R}$ (når $f(1)=-1$).
3) $f(x)\equiv 0, \ \ \ \ \ \ \ \forall x\in \mathbb{R}$ (når $f(1)=0$).

Vi verifiserer at 2) og 3) faktisk er løsninger ved innsetting.
Ser bra ut!