
Julekalender - luke 5
Moderatorer: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa
-
- Guru
- Innlegg: 628
- Registrert: 06/08-2011 01:56
Flott initiativ med Julekalenderen!
Siden $\triangle{ABC}\sim\triangle{FGC}\sim\triangle{DEC}$ finner vi at
\[\frac{AC}{CD}=\sqrt{\frac{\operatorname{Areal}(\triangle{ABC})}{\operatorname{Areal}(\triangle{CDE})}}=\sqrt3 \]
og tilsvarende
\[\frac{FC}{CD}=\sqrt{\frac{\operatorname{Areal}(\triangle{CFG})}{\operatorname{Areal}(\triangle{CDE})}}=\sqrt2 . \]
Dermed er
\[\frac{CD}{FA}=\frac{CD}{AC-FC}=\frac1{\frac{AC}{CD}-\frac{FC}{CD}}=\frac1{\sqrt3-\sqrt2}=\sqrt3+\sqrt2 .\]
Siden $\triangle{ABC}\sim\triangle{FGC}\sim\triangle{DEC}$ finner vi at
\[\frac{AC}{CD}=\sqrt{\frac{\operatorname{Areal}(\triangle{ABC})}{\operatorname{Areal}(\triangle{CDE})}}=\sqrt3 \]
og tilsvarende
\[\frac{FC}{CD}=\sqrt{\frac{\operatorname{Areal}(\triangle{CFG})}{\operatorname{Areal}(\triangle{CDE})}}=\sqrt2 . \]
Dermed er
\[\frac{CD}{FA}=\frac{CD}{AC-FC}=\frac1{\frac{AC}{CD}-\frac{FC}{CD}}=\frac1{\sqrt3-\sqrt2}=\sqrt3+\sqrt2 .\]