Jeg aner egentlig ikke om jeg bryter noen regler her og løsningen er sikkert veldig stygg, men ble veldig oppslukt av denne oppgaven. er det feil så griner jeg
$\frac{1}{1*2*3*4} + \frac{1}{5*6*7*8} + \frac{1}{9*10*11*12} + \text{ ... } = \frac{1}{4!} + \frac{1}{\frac{8!}{4!}} + \frac{1}{\frac{12!}{8!}} + \text{ ... } = \frac{0!}{4!} + \frac{4!}{8!} + \frac{8!}{12!} + \text { ...}$
$a_n = \frac{\left( 4(n-1) \right)!}{(4n)!} = \frac{(4n - 4)!}{(4n)(4n - 1)(4n - 2)(4n - 3)(4n-4)!} = \frac{1}{4n(4n-1)(4n-2)(4n-3)}$
$\sum_{n = 1}^{\infty} \frac{1}{4n(4n-1)(4n-2)(4n-3)} = \sum_{k = 0}^{\infty}\frac{1}{(4k+4)(4k+3)(4k+2)(4k+1)}$
$= -\frac{1}{6}\sum_{k = 0}^{\infty}\frac{1}{4k+4} + \frac{1}{2}\sum_{k = 0}^{\infty}\frac{1}{4k + 3} - \frac{1}{2}\sum_{k=0}^{\infty}\frac{1}{4k+2} + \frac{1}{6}\sum_{k = 0}^{\infty}\frac{1}{4k+1}$
$= -\frac{1}{6}\left(\sum_{k = 0}^{1}\frac{1}{4k+4} + \sum_{k = 1}^{\infty}\frac{1}{4k+4} \right) + \frac{1}{2}\left(\sum_{k = 0}^{1}\frac{1}{4k+3} + \sum_{k = 1}^{\infty}\frac{1}{4k+3} \right) -\frac{1}{2}\left(\sum_{k = 0}^{1}\frac{1}{4k+2} + \sum_{k = 1}^{\infty}\frac{1}{4k+2} \right) + \frac{1}{6}\left(\sum_{k = 0}^{1}\frac{1}{4k+1} + \sum_{k = 1}^{\infty}\frac{1}{4k+1} \right)$
ser leddene som går mot uendelig blir 0 så da står det igjen
$= -\frac{1}{6}\sum_{k = 0}^{1}\frac{1}{4k+4} + \frac{1}{2}\sum_{k = 0}^{1}\frac{1}{4k+3} -\frac{1}{2}\sum_{k = 0}^{1}\frac{1}{4k+2} + \frac{1}{6}\sum_{k = 0}^{1}\frac{1}{4k+1}$
$= -\frac{1}{6}\left(\frac{1}{4} + \frac{1}{8} \right) + \frac{1}{2}\left(\frac{1}{3} + \frac{1}{7} \right) - \frac{1}{2}\left(\frac{1}{2} + \frac{1}{6}\right) + \frac{1}{6}\left( 1 + \frac{1}{5}\right)$
$= -\frac{1}{16} + \frac{5}{21} - \frac{1}{3} + \frac{1}{5} = \frac{71}{1680} \approx 0.0422619047619$